Luke Kehoe leads Ookla’s research and thought leadership efforts in Europe.
An electronic engineering alumnus of University College Dublin, Luke has extensive experience collaborating with mobile operators, telecoms vendors, and government agencies in research and advisory roles across Europe. He has contributed to internationally recognised thought leadership publications in areas such as 5G, IoT, open RAN, and edge computing, working with prestigious organisations like the Telecom Infra Project and the World Economic Forum.
Climate change is placing new demands on operators and regulators to harden telecoms infrastructure against severe weather events
Storm Darragh caused widespread mobile network outages across Ireland in recent days, impacting all operators. The storm resulted in the most extensive damage to the country’s electricity infrastructure in a decade, leaving nearly 400,000 premises without power at its peak.
This led to significant disruptions to mobile site uptime, prompting the swift deployment of mobile generators across affected areas and a seismic shift in mobile network usage patterns, with increased demand in locations where power cuts or other disruptions rendered fixed broadband unusable.
Mobile networks came under strain during Storm Darragh, pulling down performance nationwide
Analysis of Speedtest Intelligence® data reveals the substantial impact of the storm on mobile network performance in Ireland. A marked and sustained decline in download and upload speeds, as well as increased latency and jitter, was observed across all operators nationally. The deterioration escalated rapidly on Friday night (6th December) as the storm made landfall, peaking on Saturday (7th December) and is only slowly returning to the pre-storm performance baseline as power outages persist through this week in the worst-affected areas.
Consistency Deteriorated Across All Mobile Operators in Ireland During Storm Darragh
Speedtest Intelligence® | December 2024
Median download speeds on Saturday were nearly 70% lower than the 7-day average preceding the storm across all operators and technologies, while median latency increased by nearly 17%. Consistency—a measure of the percentage of an operator’s samples meeting or exceeding minimum download and upload thresholds—dropped to some of its lowest one-day levels recorded in Ireland in recent years. Around 40% of all samples failed to meet the minimum thresholds across 4G (5 Mbps download, 1 Mbps upload) and 5G (25 Mbps download, 3 Mbps upload) on Saturday.
This performance analysis is based on the national picture, highlighting that the impact was significant enough to lower the overall country-wide performance profile. A closer examination of the worst-affected areas along the western seaboard revealed even more pronounced declines in performance outcomes in the aftermath of the storm.
Latency Performance Deteriorated Across All Mobile Operators in Ireland During Storm Darragh
Speedtest Intelligence® | December 2024
The volume of Speedtests initiated by Irish users increased significantly above typical levels over the weekend, serving as a proxy for the connectivity challenges. This surge also reflects the impact of a shift in usage patterns, with households resorting to tethering mobile connections when fixed broadband became unavailable and thereby increasing further the strain on a depleted mobile site grid.
Download Speed Performance Deteriorated Across All Operators in Ireland During Storm Darragh
Upload Speed Performance Deteriorated Across All Mobile Operators in Ireland During Storm Darragh
Speedtest Intelligence® | December 2024
10th Percentile Download Speed Performance is Recovering As Power Outages Recede and Network Load Normalises
Speedtest Intelligence® | December 2024
Battery backup is needed for future resilience but costs remain a barrier
Lead-acid and lithium-ion batteries are widely deployed across mobile sites in Ireland and other countries, providing short-term resilience in the event of power outages. The fact that only a small proportion of deployed backup batteries provide sufficient capacity to last for multiple hours means that operators rely heavily on stationary and mobile generators during prolonged power outages.
Ireland is no exception to this trend. The UK’s Ofcom reported recently that “around 20% of all mobile sites have some backup functionality at the RAN [in the UK] for more than 15 minutes, with around 5% of sites able to withstand a six-hour power loss (excluding battery backup for transmission traffic)”. It has consulted on revised ‘Resilience Guidance’ for the UK’s telecoms operators, published a call for input (CFI) on power backup for mobile networks and is now working with the government to determine if additional resilience measures are needed.
Mobile operators in Ireland and elsewhere proactively ensure that generators are refuelled in advance of adverse weather events like Storm Darragh and leverage strategic fuel dumps across the country to enable rapid refuelling where needed. The high upfront cost of battery backup and the high operating cost of generators, however, prohibits universal deployment in the current capital environment, with dedicated solutions needed for each operator, even at shared sites—necessitating targeted policy support and new solutions to improve network resilience as the frequency and severity of these weather events increases.
Network resilience lessons from around the world
The policy success of Nordic countries such as Norway and Finland, where local regulators NKOM and Traficom have intervened with legislative instruments to stipulate a minimum number of hours of continuity of mobile service post-power outage, demonstrates that there are viable solutions to harden mobile network infrastructure. Similar efforts have been observed in Australia, where the government subsidised a ‘Mobile Network Hardening’ programme to retrofit 467 cell sites with 12 hours power backup capability.
Ofcom’s aforementioned consultations have not yet led to the proposal of any specific measures relating to the provision of battery backup solutions in the UK. The regulator’s preliminary assessment of the feasibility of any such measures concluded that the exorbitant costs involved in providing a minimum of one hour of power resilience at every cell site in the country would not be proportionate to the potential economic benefit accrued—with cost projections in the region of £0.9-1.8 billion.
Nonetheless, Ofcom has expressed hope that the continued reduction in the cost of battery backup solutions will make interventions viable in the future. Progress in developing new business models to monetise battery backup solutions is also likely to improve their allure over time for operators, with new use cases emerging in grid frequency restoration.
Finland’s Elisa has been a global leader in this space through the success of its ‘Distributed Energy Storage’ solution, which provides energy to the grid at peak times and charges from the grid in off-peak times. The operator claims to have reduced the payback period of its mobile site battery installations to 3-5 years.
Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.
After years of decline in international rankings, can the UK’s largest telecoms merger in decades revive competition in network quality?
In this special year-end article, we examine the past year in UK telecoms, assessing the country’s global competitiveness, evaluating 5G SA rollouts and monetisation strategies, highlighting the growing trend of convergence and looking ahead to what the market may bring in 2025.
The State of the UK’s Mobile Networks
The UK continued to trail its developed peers in mobile performance in 2024
Reports of mobile not-spots, outages and peak-time congestion dominated discussions around the UK’s mobile networks this year, with high-profile publications highlighting their underperformance compared to developed peers elsewhere in Europe and North America. Particular attention has been drawn to indoor coverage deficits—where over 80% of mobile traffic originates today—and lingering blackspots along key rail corridors nationwide.
Consumer research published by Ookla earlier this year, based on a survey of over 2,000 smartphone users in the UK and US, revealed significantly higher dissatisfaction among UK mobile users. Quality of experience (QoE) issues, such as slow-loading web pages (37%) and interrupted video streams (19%), were prominent, with over a quarter of UK respondents also reporting service interruptions or outages at least once a month. These experiences are likely driving a higher propensity to churn, with 27% of users planning to switch operators within the next twelve months citing coverage as their primary reason.
Analysis of Speedtest Intelligence® data underscores UK consumers’ concerns, revealing the country’s stark international underperformance. Over the past eight years, the UK has shifted from being a G7 leader to a laggard in mobile download speeds at the 10th percentile—a key measure of baseline network performance, as it reflects the experience of users with the slowest connections. These speeds are now lower in the UK than in all but one other G7 country (Japan), with the gap to the leader (France) now widening rapidly on a year-on-year basis.
Outside the G7, the UK recorded the lowest Consistency score in Europe (82.56%) during Q2-Q3 2024, ahead of only Ireland. This metric reflects the percentage of consumer-initiated Speedtest samples meeting minimum speed thresholds: 5 Mbps download and 1 Mbps upload on 4G, and 25 Mbps download and 3 Mbps upload on 5G. Market-wide Consistency in the UK saw only slight increases over the year, primarily driven by improvements in the performance of 4G networks.
Investments in RAN upgrades and site expansion are driving progress in coverage and QoE moving into 2025
Notwithstanding the challenges, there is evidence that the performance of the UK’s mobile networks improved notably during the year, as reflected in other key indicators. Speedtest Intelligence data revealed a reduction in market-wide latency to 51.83 ms, reflecting progress across three of the four operators. Moreover, the observed quality of experience for bread-and-butter activities such as gaming and video streaming moved in the right direction again after a decline last year.
Significant investments in RAN upgrades and site expansions, bolstered in part by the government’s 4G-focused Shared Rural Network (SRN) initiative, contributed to substantial improvements in network coverage across all operators over the year. Overall 5G Availability in the UK rose by nearly 10 percentage points to 36.25% between 2023 and 2024, while 4G Availability increased from 93.8% to 95.7% during the same period.
Ofcom noted, however, that there remains a substantial rural-urban divide in terms of 5G deployment progress in the UK, with 5G deployed on 42% of sites in urban areas, compared with just 16% of sites in rural areas, at the end of 2024.
Progress in the 3G sunset underlines the importance of supporting new measures to improve indoor connectivity outcomes
The shutdown of 3G networks, which reportedly accounted for less than 1% of traffic but over a quarter of operators’ RAN electricity consumption in some cases, has played an important role in freeing up spectrum for 4G and 5G. EE, for instance, has expanded its refarmed 2100 MHz spectrum deployments (n1) for 5G, increasing channel bandwidth from 15 MHz to 20 MHz during the year.
Speedtest Intelligence data reveals a decrease in overall 3G General Availability in the UK from 3.43% last year to 1.60% in 2024, indicating the percentage of users falling back to and mainly using 3G networks more than halved in the period. A potential consequence of the 3G sunset, however, is an increased reliance on 2G networks, particularly in deep indoor environments—the percentage of overall users that spend the majority of their time on 2G increased from 0.37% in 2023 to 0.76% this year.
By the end of 2025, all four of the UK’s mobile operators are expected to have completed their 3G sunsets. Reducing the propensity to fall back to 2G and enhancing the handover experience to 4G and 5G networks are likely to remain key priorities for operators’ RAN strategies. Progress in enhancing the indoor mobile network experience in the UK, enabled by deployment models such as Boldyn Networks’ small cell rollout on the London Underground and new in-building neutral host solutions from companies like Freshwave and Proptivity, will be key and may benefit from policy support.
Merger approval transforms spectrum landscape and provides certainty moving into 2025
The successful approval of the merger between Three and Vodafone by the Competition and Markets Authority (CMA) brings much-needed certainty to the market heading into 2025. This decision is expected to encourage long-term commitments to capital spending on network upgrades across all operators in the UK market, not just required by the merged entity for integrating its networks and complying with the CMA’s behavioural remedies. With the consolidation and redistribution of spectrum benefiting both the merged entity and Virgin Media O2 (VMO2), two of the three in-market operators will have more headroom to expand network capacity where needed.
Research published by Ookla earlier this year examined the impact of operator consolidation on network quality outcomes across Europe and a sample of other high-income countries. It found that a three-player market structure—now set to define the UK market following the merger—tends to be associated with higher median download speeds, improved network consistency and more positive consumer sentiment in the markets where it is present over time.
The UK leads Europe in the commercialisation of 5G SA
While the UK lags behind its developed peers in mobile network performance, it has emerged as a global leader in the commercial rollout of the standalone (SA) 5G architecture. It remains the only European country with three commercially available 5G SA networks at the end of 2024, as VMO2 and EE joined Vodafone this year in launching the technology, primarily targeting dense urban areas in cities and towns. Ofcom reported that there were 3,300 5G SA-capable sites by the end of 2024, representing 15% of all reported 5G sites and carrying 3% of the UK’s overall monthly mobile traffic.
Controlled network testing by RootMetrics®, an Ookla company, on EE’s 5G network in Birmingham in October confirmed the significant latency improvements unlocked by the SA architecture. With 115 MHz of channel bandwidth observed across much of EE’s SA deployments along the test route, the operator stands out as the closest European equivalent to T-Mobile in the US which, like EE, has distinguished itself through extensive SA spectrum allocation spanning multiple carriers from low-band to mid- and high-bands.
In addition to upgrading traditional rooftop and monopole sites for 5G SA, operators like VMO2 are deploying street-level 5G SA small cells in increasing numbers to boost network capacity in high-footfall areas. This approach to network densification is expected to accelerate next year as macro site grid upgrades mature and operators collaborate with local authorities to streamline deployment processes for street-level mobile infrastructure.
Stimulating consumer demand for 5G SA proves a challenge, with bundling emerging as a key sales strategy
On a business level, each operator has adopted a distinct strategy to market 5G SA in the UK, highlighting the persistent challenges of monetising 5G investments as far as mid-way through the technology cycle. Vodafone led the charge with a consumer-focused launch in 2023, branding its SA service as ‘5G Ultra’. In an effort to upsell its base, the offering was limited to postpay subscribers, with ‘improved phone battery life’ promoted as a key selling point.
In contrast, VMO2 launched its 5G SA network this year, following the playbook of operators like Iliad’s Free in the French market, by offering access to its existing subscribers at no additional cost. While the operator touted improvements in latency and uplink performance unlocked by the new 5G SA core and enhanced carrier aggregation, the aggressive pricing strategy reinforces the increasing industry consensus in Europe that consumers are unwilling to pay a premium for 5G SA alone.
Recognising this challenge in marketing the technology as a worthy consumer upgrade from the NSA architecture, and aligning with its strategy to transition from a traditional telecoms operator to a dynamic, service-led household brand, EE has taken a more ambitious approach. The operator has bundled its 5G SA offerings, restricted to its most expensive tariffs, with content packages, securing a partnership with Google to provide access to its premium Gemini Advanced AI model as part of the deal.
Bundling has proven effective for upselling in other advanced markets, particularly in Asia, where operators have successfully boosted ARPU by introducing differentiated services early in the 5G cycle. In addition to bundling Google’s AI services, EE introduced a ‘Network Boost’ subscription add-on with its 5G SA launch, offering premium subscribers the option to pay for prioritised network access during times of congestion.
This bundling strategy is expected to expand further in the UK next year, aligning with converged fixed and mobile offerings from operators like BT and VMO2. As the rollout of 5G SA matures and is afforded greater strategic priority under the government’s Wireless Infrastructure Strategy (WIS), and the device and solution ecosystem continues to mature, operators are likely to shift their focus to the enterprise segment—arguably the only market where SA-specific features, such as network slicing, hold any substantive monetisation potential.
The State of the UK’s Fixed Broadband Networks
Fibre land grab boosts the UK’s international ranking in fixed broadband performance
The recent groundswell of investment in fibre infrastructure across the UK is paying off, with median download speeds on fixed networks increasing by nearly 40% between 2023 and 2024 to 107.07 Mbps, according to Speedtest Intelligence data. This improvement trend also extended to other key metrics, including a 6% reduction in latency to 20.47 ms and enhanced QoE for gaming and video streaming across major ISPs. Ofcom reported that FTTH reached nearly 7 in 10 homes at the end of 2024, putting the UK on track to reach the government’s target of 85% full-fibre coverage by the end of 2025.
UK leads Germany and Italy in Fixed Download Speeds, but Trails G7 Leaders
Source: Speedtest Intelligence® | 2018 – 2024
Spline plot comparison of median fixed download speeds among the G7 countries between 2018 and 2024 based on Speedtest Intelligence® data.
Notably, in the context of Ookla’s Speedtest Global Index™, the UK continues to rank relatively higher in fixed network performance compared to mobile performance. The significant gains in median fixed download, upload and latency performance over the last year have propelled the UK up twelve places in the index, positioning it ahead of other G7 countries like Germany and Italy. However, it remains in the lower half of Western European countries.
Wi-Fi 7 poised to become the default standard for ISPs targeting premium experiences in 2025
The growing adoption of advanced Wi-Fi solutions, including mesh routers for enhanced whole-home coverage and Wi-Fi 6E-capable access points for higher throughput on multi-gigabit FTTH connections, continues to play an important role in enhancing fixed performance outcomes in the UK. In the year gone by, fixed ISPs have increasingly relied on ‘Wi-Fi guarantees’ as a cornerstone of their marketing strategies, offering promises of minimum download speeds in every room—backed by money-back assurances.
Building on this momentum, Wi-Fi 7 is expected to become the default standard for CPE provided by UK ISPs on premium FTTH tariffs from next year. BT was among the first ISPs globally to launch a next-generation Wi-Fi 7 router earlier this year, partnering with Qualcomm to introduce its new ‘Smart Hub Pro’ and ‘Smart Wi-Fi Pro’ CPE solutions to EE Home Broadband customers.
Merger approval ups the ante on convergence moving into 2025
The merger between Three and Vodafone paves the way for the UK to have three converged operators for the first time. The merged entity, following in the footsteps of previous tie-ups between BT and EE in 2016 and Virgin Media and O2 in 2021, will aim to fully integrate its fixed and combined mobile networks to deliver a differentiated experience that is better than the sum of its individual parts.
This trend is expected to drive operators to move beyond basic cross-selling of mobile and fixed services, instead positioning converged solutions as premium tariff bundles that deliver seamless, best-in-class experiences across fixed, mobile and Wi-Fi—on any device, anywhere. BT’s ‘EE One’ converged solution, unveiled alongside its 5G SA and Wi-Fi 7 launches earlier this year, offers a preview of the kinds of solutions likely to emerge from all converged operators in 2025.
Operator investments in bringing their fixed and mobile networks closer together will play a key role in ensuring subscribers enjoy an improved experience across all access paths. VMO2, for example, recently announced the activation of its ‘Converged Interconnected Network’ architecture, which it touted as improving the operator’s ability to manage traffic flows across its fixed and mobile services by aggregating data closer to the end user before routing it back to the core network.
Key Trends to Watch in 2025
Mobile Data Traffic Growth Plateau
The UK, like other advanced mobile markets in Europe and North America, is entering a phase of declining mobile data traffic growth, following an S-curve trajectory. Ofcom reported an 18% increase in total monthly traffic in 2024, marking a slowdown from the 25% growth observed in both 2022 and 2023. This trend of moderated growth is expected to continue next year and warrants close attention, as it could significantly impact mobile operators’ capital cycles, spectrum demand and equipment vendors’ business models over the long term in the UK and further afield.
Private Network Proliferation
The removal of the requirement to individually register end-user devices for low-power use in shared bands, increased availability of medium-power licenses and the launch of a comprehensive spectrum mapping tool for the 3.8-4.2 GHz band were key milestones in Ofcom’s support for private networks in 2024. These measures contributed to the provision of 113 new shared access licenses between July and November, including 45 in the 1800 MHz band and 68 in the 3.8-4.2 GHz band. Further growth in the UK’s private network ecosystem is expected in 2025, with Ofcom set to enable low-power indoor access in the 2.3 GHz band.
Direct-to-Device (D2D) Arrival
Ofcom is developing a framework to authorise and facilitate D2D services in the UK, with a consultation scheduled for the first half of 2025. It will also review its approach to the mobile satellite service (MSS) licences in the 2 GHz band, as the current EU-wide licences are set to expire in 2027, allowing the UK to independently determine their future use. EE and O2 are the most likely potential candidates for a Direct-to-Cell (D2C) partnership with SpaceX’s Starlink, while Vodafone has been flirting with AST SpaceMobile.
Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.
MarioDraghi has flirted with a radical restructuring of Europe’s telecoms market, seeking to cultivate pan-European scale and reinvigorate innovation and investment in telecoms. But is consolidation the answer?
Europe’s telecoms sector is at an inflection point. After a decade of stagnant revenues, lacklustre innovation and fierce competition, policymakers in Brussels are scrutinising the fundamental structure of the market. Earlier this year, a landmark report by Mario Draghi reignited discussions on consolidation, championing the creation of pan-European operators and calling for a decisive regulatory shift from proactive competition oversight (ex ante) to a reactive focus on enforcement after issues arise (ex post).
The proposed shift in policy comes as concerns over Europe’s telecoms sector’s ability to compete on a global stage reach a crescendo. A central tenet of the Draghi report is that the bloc’s fragmented telecoms market—a morass of dozens of small operators compared to just a handful in similarly sized regions elsewhere—has triggered a race to the bottom in pricing, eroding profitability and leaving Europe ill-equipped to compete with the more unified and dynamic markets of North America, the Middle East and Asia.
Mobile network quality is a key factor in the European telecoms competitiveness equation, shaping both consumer satisfaction and the bloc’s attractiveness for investment. Proponents of consolidation argue that fewer, larger operators could enhance network performance and better position the bloc to achieve the European Commission’s ambitious Digital Decade 2030 goals. The simple argument is that by cultivating market dynamics that prioritise service quality over price wars, consolidation would create stronger incentives for investment in capital-intensive mobile networks.
Critics, however, challenge this narrative that favours consolidation. Instead, they argue that network quality is not solely a function of market concentration or structure and emphasise that other factors such as pricing also play an important role in shaping Europe’s overall telecoms competitiveness. In contrast to Draghi’s position, they propose that similar outcomes could be achieved without reducing competition by deploying other policy tools, such as providing targeted funding for infrastructure rollouts or incentivising network sharing initiatives.
This white paper aims to provide independent, informed insights to support the ongoing policy discourse in Europe. It explores whether empirical evidence supports the arguments for and against consolidation in the bloc’s telecoms sector, analysing network quality, investment and pricing outcomes across the EU and a sample of other high-income countries to assess the impact of varying market structures (e.g., three or four players) and levels of market concentration.
Key takeaways
Three-player mobile markets in the EU and other high-income countries exhibit better network performance and consumer sentiment outcomes.
This trend is consistent across all technologies and at similar levels of market concentration. Among the top ten European countries ranked by median download speed in Q2-Q3 2024, seven are three-player markets. The other three — Denmark, Sweden, and France — are four-player markets where operators engage in network sharing, whether in spectrum, site infrastructure or multi-operator core networks. This suggests that the level of network sharing in these countries is more extensive than in most other four-player markets. Overall, the studied three-player markets in the EU delivered median download speeds that were 56% higher than those in four-player markets during Q2-Q3, according to Speedtest Intelligence® data.
Market concentration is not a robust predictor of 5G coverage outcomes.
Socio-economic factors such as population distribution and economic development impart a greater impact on metrics relating to overall network reach, with wealthier, more urbanised countries enjoying investment conditions that are more conducive to the attainment of very high levels of service coverage and network availability. In four-player markets, however, disparities in overall 4G availability between the best- and worst-performing operators tend to be more pronounced than their three-player counterparts.
Intense price-based competition leads to markedly lower mobile data pricing outcomes in four-player markets over time.
The median consumer cost per gigabyte in highly concentrated markets — often seen in countries with the three-player structure — is nearly five times higher than in low-concentration markets. In four-player, lower-concentration markets, depressed ARPU and higher median capital intensity may result more from limited absolute revenues constraining reinvestment than from increased competition spurring greater investment. Conversely, in some highly concentrated non-EU high-income countries, greater market concentration is associated with lower capital intensity per operator, as larger players may face reduced incentives to invest.
There is no one-size-fits-all concentration profile that uniformly optimises network quality and consumer pricing outcomes in every country.
Exceptional outcomes in countries such as Denmark — a four-player market with low concentration but very high median download speed — and the Netherlands — a three-player market with high concentration and also high median download speed — suggest a targeted policy toolkit, rather than the blunt instrument of consolidation, is needed to achieve balanced outcomes across a bloc with highly diverse market contexts.
Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.