| June 30, 2025

Poland Races to Regain 5G Competitiveness in Europe with Mid-Band Rollout | Polska galopuje do odzyskania konkurencyjności 5G w Europie dzięki wdrożeniu średniego pasma częstotliwości

Polish/Polski

Poland’s operators are rapidly deploying mid-band 5G in an attempt to capture the growing premium market segment

Late to the game in staging a mid-band auction, Poland has lagged behind its European peers in 5G deployment in recent years. This delay has weighed on the country’s global competitiveness in mobile network performance and slowed its progress toward meeting the European Commission’s flagship 5G deployment targets, which require universal 5G coverage across every EU member state by the end of the decade.

This article examines the state of Poland’s mobile market and its broader regional 5G competitiveness in the context of ongoing mid-band deployments. A follow-up report will assess the longer-term impact of the commercialization of the recently awarded low-band spectrum and ongoing network sunsets on network coverage and availability.

Key Takeaways:

  • Intensive capital spending on mid-band deployment drives substantial uplift in 5G performance across Polish operators from Q1 2024, pushing the country ahead of regional peers over the last year. Median 5G download speeds in Poland jumped by over 50% to 160.30 Mbps between Q1 2024 and Q1 2025, based on Speedtest Intelligence® data, propelling the country ahead of Czechia, Romania, and Slovakia for the first time in 5G performance. Despite this progress, Poland continues to trail its regional peers in 5G network Consistency, a measure of how reliably a mobile connection remains “fast enough” for normal use.
  • T-Mobile and Orange surpass Play and Plus in speed and select Quality of Experience (QoE) measures. Differences in how quickly and extensively Polish operators have deployed their mid-band spectrum assets have led to a diverging market profile since Q1 2024, with T-Mobile and Orange significantly extending their speed lead over their rivals. Between Q1 2024 and Q1 2025, median 5G download speeds rose by as much as 72% on Play (to 122.64 Mbps), 86% on T-Mobile (to 201.76 Mbps), and 90% on Orange (to 222.10 Mbps)—while declining by over 10% on Plus (to 116.76 Mbps). 
  • Network investments have broadened 5G coverage in Poland, but significant regional disparities remain. Nationally, 5G availability rose from 28.5% in Q1 2024 to 43.1% in Q1 2025, driven by continued Dynamic Spectrum Sharing (DSS) rollouts and the activation of mid-band spectrum—placing the country ahead of regional peers Bulgaria, Romania, and Hungary in 5G availability. Nonetheless, by Q4 2024, a pronounced coverage gap persisted between the country’s best- and worst-served provinces, with 5G availability in the populous Masovian Voivodeship (47.2%) double that of the Lubusz Voivodeship (23.6%).

Over the last year, Polish operators have been locked in an intense four-way race to catch up with their regional peers in 5G deployment, driven by stringent coverage obligations imposed by the Polish telecoms regulator (UKE), a wave of funding support from Brussels, and a growing push to compete for a larger share of the country’s widening premium market segment, where network performance has emerged as a key competitive differentiator.

Poland’s mobile market is today awash with deployment activity, as operators ramp up capital spending to the highest levels in years to equip thousands of mobile sites with mid-band spectrum, accelerate the sunset of 3G networks, and lay the groundwork for launching 5G standalone (SA) in the coming years. This flurry of activity follows the completion of the 700/800 MHz auction at the end of March this year, where all Polish operators secured low-band 5G spectrum for the first time—paving the way for improved rural and deep in-building 5G coverage and rounding out the country’s 5G spectrum release plans.

While 5G capital spending has slowed across much of Europe, Poland sees different dynamics due to late spectrum auctions

Poland was notably late in releasing dedicated 5G spectrum in the ‘pioneer bands’ identified by the European Commission as critical to the timely commercialization and rollout of 5G across EU member states. The country’s mid-band (3.6 GHz) auction, initially planned for mid-2020, was repeatedly delayed—by more than three years—due to the pandemic and a protracted security legislation process. 

These delays in spectrum availability have contributed to Poland’s divergence from much of the rest of Europe in both the economic and technical dimensions of the 5G rollout. Until recently, Polish mobile operators exhibited lower capital intensity (they invested less of their revenue) compared to peers in other European countries. Most of their spending went into upgrading 4G sites and preparing for the 3G shutdown, instead of building a new 5G mid-band capacity layer or expanding 5G coverage using low-band (700 MHz) spectrum.

Orange's Rising Mobile Capex Reflects 5G Network Expansion
Analysis of Orange Poland accounts | 2020 – 2024

Analysis of financial data published by Orange, Poland’s largest mobile operator by subscriber count, confirms that the era of lower capital intensity (relative to elsewhere in Europe) is over. The recent spectrum auctions have triggered a new cycle of investment, with Orange doubling its mobile network spending in the past three years. Play has also rapidly increased its investment, as its French parent Iliad reported injecting record amounts into Play’s mobile infrastructure last year.

Play's Contribution to Capex in the Iliad Group Surges as 5G Buildout Ramps Up
Analysis of Iliad Group accounts | 2020 – 2024

On the technical side, meanwhile, Poland’s spectrum delay meant that three of the country’s four operators were forced to rely heavily on Dynamic Spectrum Sharing (DSS)—a technology that allows 4G and 5G to operate on the same band and adjust ‘dynamically’ to demand—in an effort to deliver early 5G coverage in the 2100 MHz band while awaiting spectrum auctions. This strategy resulted in Poland’s initial 5G performance more closely resembling those typical of 4G networks, as DSS deployments are typically based on a 10 MHz carrier where part of the capacity is still reserved for 4G signals, making 5G speeds with DSS around 15–25 % lower than if the band were dedicated solely to 5G.

The limitations of using DSS to deliver a “5G experience” were exemplified by the speed advantage maintained by Plus earlier in the 5G rollout. Importantly, Plus was the only Polish operator that did not rely on DSS and instead dedicated a full 40 MHz carrier in the 2600 MHz (TDD) band to 5G before mid-band spectrum became available at the start of last year. Prior to the 3.5 GHz band coming online, when the other operators were still wholly dependent on DSS for 5G coverage, Plus’s median 5G download speed of 133.34 Mbps was as much as 77 % higher than T-Mobile’s, 81 % higher than Orange’s, and 92 % higher than Play’s. 

Intense Mid-Band Deployment lifts Poland’s Regional 5G Competitiveness and Reshapes Operator Dynamics

Polish operators move from mid-band spectrum acquisition to mass commercial deployment in record time

The pent-up demand for mid-band spectrum in Poland was evident when mobile operators like Orange, T-Mobile, and Play launched commercial services just three months after acquiring mid-band spectrum, moving quickly from the auction in October 2023 to commercial launches by January 2024. T-Mobile reported that its mid-band 5G network already covered more than 25% of the Polish population by April 2024, with more than 2,100 sites active, while Orange announced it had reached 40% coverage by mid-June.

This rollout pace is exceptional by European standards and indicative of the increased pace of deployment possible later in the 5G technology cycle. It took Spain’s Telefónica (Movistar) about six months to reach its first 1,000 mid-band sites by comparison, and Germany’s operators needed around nine months to achieve the same milestone.

Plus's Spectrum Holdings in the 2600 MHz TDD Band Lend it a Decisive Capacity Lead

Each operator secured a contiguous 100 MHz block of spectrum in the 3.5 GHz band, which is widely regarded as optimal due to the large channel bandwidth this configuration affords. However, Plus has been notably slower to commercialise this allocation at scale. Plus’s earlier strategy of deploying 5G in the dedicated 2600 MHz band (rather than relying on DSS), alongside later using the 2100 MHz band as well, gave it more flexibility to delay a broad mid-band rollout as it previously enjoyed a significant 5G speed advantage over competitors while they were still heavily dependent on DSS deployments. 

Mid-band deployment shifts 5G performance rankings among Polish operators

Mass deployment of a new capacity layer by the other three operators has since decisively altered performance dynamics in the Polish market and eroded Plus’s lead. In the space of one year between Q1 2024 and Q1 2025, Plus has moved from market leader in median 5G download speed to laggard, becoming the only Polish operator to see a year-on-year decline in 5G speed, down 10%, indicating the increasing limitations of its 2600 MHz strategy. 

Orange and T-Mobile Pull Ahead in 5G Performance with Mid-Band Deployment
Speedtest Intelligence® | Q1 2023 – Q1 2025

By contrast, mid-band deployment has boosted performance across the rest of the market, with median 5G speeds rising by as much as 72% on Play, 86% on T-Mobile, and 90% on Orange between Q1 2024 and Q1 2025. While Orange led the Polish market in Q1 with a median 5G download speed of 222.11 Mbps, the operator’s lead has narrowed significantly as T-Mobile’s mid-band buildout has progressed, with T-Mobile now recording median 5G download speeds of 201.76 Mbps, well ahead of third- and fourth-placed Play (122.64 Mbps) and Plus (116.76 Mbps), respectively.

Plus's Lead in 5G Consistency Narrows as 2600 MHz Advantage Recedes with Mid-Band Deployment
Speedtest Intelligence® | Q1 2023 – Q1 2025

Despite losing its lead in median 5G download speed, Plus continues to lead at the 10th percentile (29.44 Mbps in Q1 2025), meaning subscribers in its lowest-performing areas still enjoy comparatively better speeds than those on rival networks. This advantage is likely linked to Plus’s lower dependence on DSS. However, T-Mobile (24.48 Mbps) and Orange (21.88 Mbps) are quickly closing the gap, with their 10th percentile 5G speeds now converging toward Plus. Plus’s 5G network consistency, measured as the proportion of Speedtest samples meeting a minimum download and upload threshold of 25/3 Mbps, has also declined over the past year, although it remains the market leader.

On upload performance, meanwhile, Play’s 5G network led the market in Q1 2025, recording median speeds of 19.33 Mbps, followed by Orange (18.99 Mbps), T-Mobile (17.32 Mbps), and Plus (14.96 Mbps). Unlike the substantial gains seen in download speeds, there is limited evidence so far that the mid-band rollout has materially improved upload performance, with median upload speeds about 6% lower in Q1 2025 compared to the same quarter last year. This discrepancy arises primarily because all four operators continue to deploy 5G in non-standalone (NSA) mode, requiring devices to transmit uplink traffic via existing 4G anchor bands. Consequently, the newly available 3.5 GHz spectrum enhances downlink capacity but leaves the congested 4G uplink path unchanged.

Play Develops Lead in 5G Upload Performance
Speedtest Intelligence® | Q1 2023 – Q1 2025

The operators’ investments in deploying a new 5G capacity layer have coincided with a broader RAN refresh effort, translating into improved quality of experience for users in key use cases such as video streaming and web browsing. Median web page load times on T-Mobile’s network, for instance, improved by around 4% between Q3 2024 and Q1 2025. Orange led in video metrics such as start time, resolution, and uninterrupted playback in the last quarter.

5G Drives QoE Improvements in Use Cases like Web Browsing
Speedtest Intelligence® | Q1 2025

Capital investment expands 5G coverage, but Poland’s rural-urban digital divide persists

While investments in DSS and the mid-band rollout have enabled Polish operators to make significant strides in 5G availability, which increased nationally from 28.5% in Q1 2024 to 43.1% in Q1 2025, regional coverage disparities continue to be a feature of the mobile network experience in Poland. Operators have prioritized 5G deployments in the richest and densest parts of Poland where fiber is heavily deployed, including the Masovian (Warsaw) and Pomeranian (Tri-City) provinces. In these provinces, 5G availability reached more than 40% by the end of last year and contributed to driving materially higher median download speeds than the national average. 

5G Availability Remains Highly Varied Across Poland Outside of Urbanized Areas
Speedtest Intelligence® | 5G Availability (%) in Q4 2024

By contrast, border provinces along the south and west of the country continue to experience much lower levels of 5G availability. Lubusz had the lowest availability (23.6% at the end of last year), where there is lower population density and lower subscriber spending, which reduces operators’ commercial incentives for widespread 5G investment. This trend has driven the development of a notable speed gap between provinces, with mobile subscribers in Lubusz also experiencing the lowest median download speeds (59.97 Mbps) in Poland, almost 33% below the leading Masovian province.

Mobile Download Speeds Are Lower in Less Urbanized Areas of Poland
Speedtest Intelligence® | Median Download Speed (Mbps) in Q4 2024

Mid-band deployment improves Poland’s mobile competitiveness, but 5G consistency continues to trail regional peers

From a regional competitiveness lens, intensive mid-band deployments have been successful in breaking Poland’s cycle of mobile network underperformance, with median 5G download speeds rising by over 50% on average to 160.30 Mbps between Q1 2024 and Q1 2025. This has propelled the country ahead of Czechia, Romania, and Slovakia for the first time in terms of 5G download speed performance.

Mid-Band Deployments Propel Poland's Regional Competitiveness
Speedtest Intelligence® | 2020 – 2025

Despite Poland’s  progress on its mid-band 5G rollout, the lingering effects of reliance on DSS and limited 5G spectrum diversity—up until the recent 700/800 MHz auction—mean that Poland continues to trail its regional peers in terms of 5G network consistency. In Q1 2025, 82% of Speedtest samples in Poland met the minimum 5G performance threshold for a consistent mobile experience, compared to 86% in Hungary, 89% in Romania, and 93% in Bulgaria.

Newfound spectrum diversity lends Polish operators potent tool to stimulate ARPU growth

Poland’s previous reliance on DSS, driven by limited 5G spectrum diversity, likely contributed to its slower average revenue per user (ARPU) growth compared to neighboring countries in recent years. Polish operators initially introduced tariffs with “5G at no extra cost” bolted onto existing 4G bundles, keeping prices flat to defend market share (and thereby maintaining depressed ARPU levels relative to regional peers). Combined with the external shock induced by markedly higher energy prices, stagnant ARPU levels created challenging operating conditions in the Polish market and weighed on operator profitability. 

Intense Priced-Based Competition Precipitated Revenue Erosion in Poland During the First Half of the 5G Cycle
Analysis of GSMA Intelligence Data | % Change in Mobile ARPU (Q1 2020 vs Q1 2023)

In neighboring markets, by contrast, operators were able to leverage mid-band spectrum deployments as both technical and marketing levers, shifting their strategies from price competition toward service-based differentiation. This enabled them to more effectively upsell premium speed tiers or monetize specific use cases, such as fixed wireless access (FWA), which dedicated mid-band 5G deployments uniquely support.

T-Mobile and Play Outpaced Rivals in Subscription Share Growth in Recent Years
Analysis of UKE Market Data | 2019 – 2023

Similarly, the delayed timing of Poland’s mid-band 5G auction likely dampened supply-side factors key for driving growth in mobile data traffic. Between Q1 2020 and Q4 2024, traffic volumes in neighboring Bulgaria converged with that in Poland for the first time, increasing by 4.8x vs. Poland’s 2.6x. Meanwhile, Bulgarian operators capitalized early on mid-band spectrum availability to aggressively promote competitive FWA solutions (a major driver of mobile traffic in developed markets) and to introduce cheap unlimited data tariffs with fewer usage restrictions.

Poland Maintains Regional Lead in Mobile Data Volumes, but Bulgaria is Catching Up
Analysis of GSMA Intelligence data | 2020 – 2024

Polish operators have since sought to replicate Bulgaria’s success by debuting distinct marketing for their mid-band 5G deployments to differentiate the newer mid-band 5G rollouts from earlier DSS-based 5G networks in terms of performance and user experience. T-Mobile has leaned on ‘5G More’ branding, while Plus has used ‘5G Ultra’ to indicate the additional performance gains unlocked by their new 5G networks in locations where dedicated mid-band spectrum is deployed. This strategy has formed part of a broader shift in the market, with all operators moving away from a hyper-focus on price competition and toward ‘more for more’ pricing strategies, supporting improved profitability and renewed ARPU growth in the market with inflation-linked tariffs.

Poland Has Led Regional ARPU Growth Since Mid-Band 5G Deployments Started
Analysis of GSMA Intelligence Data | % Change in Mobile ARPU (Q1 2023 vs Q1 2025)

Low-band activation and network sunset progress set to reinforce mid-band 5G gains

With Poland’s telecom regulator, UKE, having set among Europe’s most ambitious coverage obligations for recent mid- and low-band spectrum auctions, operators are unlikely to delay commercial deployments in the newly acquired 700 and 800 MHz bands. These deployments are expected to start next month and will be crucial for establishing a national 5G coverage layer that, for the first time, extends deep indoors and into rural areas. This expanded coverage will also support wider rollout of voice over LTE (VoLTE) services, accelerating the 3G sunset and freeing up additional spectrum in the 900 MHz band.

We will revisit shortly to assess how Polish operators are progressing with deploying their new low-band spectrum and how effectively it is complementing the ongoing 3G sunset.


Polska galopuje do odzyskania konkurencyjności 5G w Europie dzięki wdrożeniu średniego pasma częstotliwości

Polscy operatorzy przyśpieszyli z wdrażaniem 5G w średnim paśmie, próbując przejąć rosnący segment rynku premium.

Polska, która spóźniła się z przeprowadzeniem aukcji na średnie pasmo, w ostatnich latach pozostawała w tyle za swoimi europejskimi rówieśnikami w zakresie wdrażania 5G. Opóźnienie to odbiło się na globalnej konkurencyjności kraju pod względem wydajności sieci mobilnych i spowolniło postępy w realizacji sztandarowych celów Komisji Europejskiej w zakresie wdrażania 5G, które wymagają powszechnego zasięgu 5G w każdym państwie członkowskim UE do końca dekady.

Niniejszy artykuł analizuje stan polskiego rynku telefonii komórkowej i jego szerszą regionalną konkurencyjność 5G w kontekście trwających wdrożeń średniego pasma. Kolejny raport oceni długoterminowy wpływ komercjalizacji niedawno przyznanego niskiego pasma na potrzeby pokryciowe 5G.

Kluczowe wnioski:

  • Intensywne wydatki kapitałowe na wdrożenie średniego pasma napędzają znaczny wzrost wydajności 5G u polskich operatorów od pierwszego kwartału 2024 r., pozycjonując kraj przed regionalnych konkurentów w ciągu ostatniego roku. Mediana prędkości pobierania 5G w Polsce wzrosła o ponad 50% do 160,30 Mb/s w okresie od I kwartału 2024 r. do I kwartału 2025 r., w oparciu o dane Speedtest Intelligence®, dzięki czemu Polska po raz pierwszy wyprzedziła Czechy, Rumunię i Słowację pod względem wydajności 5G. Pomimo tego postępu, Polska nadal pozostaje w tyle za swoimi regionalnymi rówieśnikami pod względem spójności sieci 5G, która jest miarą tego, jak niezawodnie zestawione połączenie mobilne pozostaje “wystarczająco szybkie” do normalnego użytkowania.
  • T-Mobile i Orange przewyższają Play i Plus pod względem prędkości i wybranych wskaźników jakości doświadczenia usług (QoE). Różnice w strategiach, jak szybko i szeroko polscy operatorzy wdrożyli swoje aktywa widma w średnim paśmie, doprowadziły do rozbieżnego profilu rynku od pierwszego kwartału 2024 r., przy czym T-Mobile i Orange znacznie zwiększyły swoją przewagę w zakresie prędkości nad rywalami. Pomiędzy I kwartałem 2024 r. a I kwartałem 2025 r. mediana prędkości pobierania 5G wzrosła aż o 72% w Play (do 122,64 Mb/s), 86% w T-Mobile (do 201,76 Mb/s) i 90% w Orange (do 222,10 Mb/s) – przy jednoczesnym spadku o ponad 10% w Plusie (do 116,76 Mb/s).
  • Inwestycje sieciowe zwiększyły zasięg 5G w Polsce, ale nadal utrzymują się znaczne różnice regionalne. W ujęciu krajowym dostępność sieci 5G wzrosła z 28,5% w I kwartale 2024 r. do 43,1% w I kwartale 2025 r., co wynikało z dalszego wdrażania dynamicznego współdzielenia widma (DSS) i aktywacji widma w średnim paśmie, dzięki czemu Polska wyprzedziła pod względem dostępności sieci 5G regionalne kraje takie jak Bułgaria, Rumunia i Węgry. Niemniej jednak do IV kwartału 2024 r. utrzymywała się wyraźna luka w zasięgu między najlepiej i najgorzej obsługiwanymi województwami w kraju, przy czym dostępność 5G w zaludnionym województwie mazowieckim (47,2%) była dwukrotnie wyższa niż w województwie lubuskim (23,6%).
  • Wyłączenia sieci 3G (ang. “3G sunset”) powodują gwałtowny spadek czasu spędzonego na 3G w 2024 r., ponieważ polscy operatorzy reorganizują widmo dla 4G (ang. “refarming”), ale ma to ogromny wpływ na dostępność usług w miejscach mniej zurbanizowanych. Podczas gdy T-Mobile pozostał jedynym polskim operatorem, który w pełni zakończył proces wygaszania sieci 3G do pierwszego kwartału 2025 r., zarówno Orange, jak i Play czynią obecnie znaczne postępy w zakresie refarmingu widma 3G 900 MHz i 2100 MHz na potrzeby 4G. Czas spędzony na 3G spadł poniżej 3% dla obu operatorów do końca 2024 roku. Natomiast abonenci Plusa nadal spędzali znacznie więcej czasu w sieci 3G – 13,41% na koniec 2024 roku.

W ciągu ostatniego roku polscy operatorzy byli jednak zamknięci w intensywnym wyścigu, aby dogonić swoich regionalnych kolegów we wdrażaniu 5G, napędzanym przez rygorystyczne obowiązki w zakresie zasięgu nałożone przez polskiego regulatora telekomunikacyjnego (UKE), falę wsparcia finansowego z Brukseli i rosnące dążenie do konkurowania o większy udział w poszerzającym się segmencie rynku premium w kraju, w którym wydajność sieci stała się kluczowym wyróżnikiem konkurencyjnym.

Polski rynek telefonii komórkowej jest dziś zdominowany aktywnością wdrożeniową, stąd operatorzy zwiększają wydatki kapitałowe do najwyższych poziomów od lat, aby wyposażyć tysiące stacji bazowych w widmo średniego pasma, przyspieszyć wyłączanie sieci 3G i położyć podwaliny pod uruchomienie samodzielnej sieci 5G (SA) w nadchodzących latach. Taką falę aktywności można zwłaszcza zauważyć po zakończeniu aukcji 700/800 MHz pod koniec marca tego roku, w której wszyscy polscy operatorzy po raz pierwszy zabezpieczyli widmo 5G w niskim paśmie – torując sobie drogę do poprawy zasięgu 5G na obszarach wiejskich i głęboko wewnątrz budynków (ang. “deep in-building”) w miastach oraz uzupełniając krajowe plany udostępniania widma 5G.

Podczas gdy wydatki kapitałowe na 5G spowolniły w dużej części Europy, Polska doświadcza inną dynamikę ze względu na późne aukcje na częstotliwości

Polska znacznie spóźniła się z udostępnieniem dedykowanych częstotliwości 5G w “pionierskich” pasmach zidentyfikowanych przez Komisję Europejską jako krytyczne dla terminowej komercjalizacji i wdrożenia 5G w państwach członkowskich UE. Krajowa aukcja częstotliwości pasma środkowego (3,6 GHz), początkowo planowana na połowę 2020 r., była wielokrotnie opóźniona – o ponad trzy lata – z powodu pandemii i przedłużającego się procesu legislacyjnego w zakresie bezpieczeństwa.

Te opóźnienia w dostępności częstotliwości przyczyniły się do tego, że Polska odbiega od reszty Europy zarówno w wymiarze ekonomicznym, jak i technicznym wdrażania 5G. Do niedawna polscy operatorzy komórkowi wykazywali niższą kapitałochłonność (inwestowali mniejszą część swoich przychodów) w porównaniu do innych europejskich operatorów. Większość ich wydatków przeznaczono na modernizację 4G i przygotowanie do wyłączenia 3G, zamiast budować nową warstwę pojemności 5G w średnim paśmie lub rozszerzać zasięg 5G przy użyciu niskich częstotliwości (700 MHz).

Rosnące nakłady Orange na sieć mobilną odzwierciedlają rozwój sieci 5G
Analiza rachunków Orange Polska | 2020–2024

Analiza danych finansowych opublikowanych przez Orange, największego operatora komórkowego w Polsce pod względem liczby abonentów, potwierdza, że era niższej kapitałochłonności (w porównaniu z innymi krajami w Europie) dobiegła końca. Niedawne aukcje częstotliwości wywołały nowy cykl inwestycyjny, a Orange podwoił wydatki na sieć mobilną w ciągu ostatnich trzech lat. Play również gwałtownie zwiększył swoje inwestycje, jego francuska spółka dominująca Iliad poinformowała w zeszłym roku o zainwestowaniu rekordowych kwot w infrastrukturę mobilną Play.

Udział Play w nakładach inwestycyjnych Grupy Iliad gwałtownie rośnie wraz z przyspieszeniem rozbudowy sieci 5G
Analiza rachunków Grupy Iliad | 2020–2024

Tymczasem od strony technicznej opóźnienie aukcji częstotliwości 5G w Polsce oznaczało, że trzech z czterech operatorów w kraju było zmuszonych w dużym stopniu polegać na dynamicznym współdzieleniu widma (ang. “Dynamic Spectrum Sharing” – DSS) – technologii, która pozwala 4G i 5G działać w tym samym paśmie i “dynamicznie” dostosowywać się do zapotrzebowania na pojemność danej technologii – w celu zapewnienia wczesnego zasięgu 5G w paśmie 2100 MHz w oczekiwaniu na aukcje częstotliwości. Strategia ta spowodowała, że początkowa wydajność 5G w Polsce bardziej przypominała typową dla sieci 4G, ponieważ wdrożenia DSS są zwykle oparte na nośnej 10 MHz, w której część pojemności jest nadal zarezerwowana dla sygnałów 4G, co powoduje, że prędkości 5G z DSS są o około 15-25% niższe niż gdyby pasmo było przeznaczone wyłącznie dla 5G.

Ograniczenia wykorzystania DSS do zapewnienia “doświadczenia 5G” zostały zilustrowane przewagą prędkości utrzymywaną przez Plusa na wcześniejszym etapie wdrażania 5G. Co ważne, Plus był jedynym polskim operatorem, który nie polegał na DSS i zamiast tego przeznaczył pełną nośną 40 MHz w paśmie 2600 MHz (TDD) na 5G, zanim na początku ubiegłego roku częstotliwości średniego pasma stały się dostępne. Przed uruchomieniem pasma 3,5 GHz, gdy pozostali operatorzy byli nadal w pełni zależni od DSS w zakresie zasięgu 5G, średnia prędkość pobierania 5G Plusa wynosząca 133,34 Mb/s była aż o 77% wyższa niż w T-Mobile, 81% wyższa niż w Orange i 92% wyższa niż w Play.

Intensywne wdrażanie średniego pasma podnosi regionalną konkurencyjność Polski w zakresie 5G i zmienia dynamikę operatorów

Polscy operatorzy w rekordowym czasie przechodzą od zakupu częstotliwości w średnim paśmie do masowego wdrożenia komercyjnego

Stłumiony popyt na częstotliwości średniego pasma w Polsce był widoczny, gdy operatorzy komórkowi, tacy jak Orange, T-Mobile i Play, uruchomili usługi komercyjne zaledwie trzy miesiące po nabyciu częstotliwości średniego pasma, szybko przechodząc od aukcji w październiku 2023 r. do komercyjnego uruchomienia do stycznia 2024 roku. T-Mobile poinformował, że jego średniopasmowa sieć 5G obejmowała już ponad 25% populacji Polski do kwietnia 2024 r., z ponad 2100 aktywnymi stacjami bazowymi, podczas gdy Orange ogłosił, że osiągnął 40% zasięgu do połowy czerwca.

To tempo wdrażania jest wyjątkowe jak na standardy europejskie i wskazuje na zwiększone tempo wdrażania możliwe w późniejszym okresie cyklu technologicznego 5G. Dla porównania, hiszpańska Telefónica (Movistar) potrzebowała około sześciu miesięcy, aby osiągnąć pierwsze 1000 stacji bazowych w średnim paśmie, a niemieccy operatorzy potrzebowali około dziewięciu miesięcy, aby osiągnąć ten sam kamień milowy.

Zasoby częstotliwości Plus w paśmie 2600 MHz TDD zapewniają mu zdecydowaną przewagę przepustowości

Każdy z operatorów zabezpieczył ciągły blok częstotliwości o szerokości 100 MHz w paśmie 3,5 GHz, który jest powszechnie wykorzystywany. Jednak Plus był znacznie wolniejszy w komercjalizacji tej alokacji na dużą skalę. Wcześniejsza strategia Plusa polegająca na wdrażaniu 5G w dedykowanym paśmie 2600 MHz (zamiast polegać na DSS), a później także na wykorzystaniu pasma 2100 MHz, dała mu większą elastyczność w opóźnianiu szerokiego wdrożenia średniego pasma, ponieważ wcześniej cieszył się znaczną przewagą prędkości 5G nad konkurentami, podczas gdy byli oni nadal silnie uzależnieni od wdrożeń DSS.

Wdrożenie średniego pasma zmienia rankingi wydajności 5G wśród polskich operatorów

Masowe wdrożenie nowej warstwy pojemności przez pozostałych trzech operatorów zdecydowanie zmieniło dynamikę wydajności 5G na polskim rynku i zmniejszyło przewagę Plusa. W ciągu jednego roku, między pierwszym kwartałem 2024 r. a pierwszym kwartałem 2025 r., Plus przesunął się z lidera rynku pod względem mediany prędkości pobierania 5G do jednego z wolniejszych, stając się jedynym polskim operatorem, który odnotował spadek prędkości 5G rok do roku, o 10%, co wskazuje na rosnące ograniczenia jego strategii 2600 MHz.

Orange i T-Mobile zyskują przewagę w wydajności 5G dzięki wdrożeniu pasma średniego
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Z kolei wdrożenie średniego pasma zwiększyło wydajność na pozostałej części rynku, a mediana prędkości 5G wzrosła aż o 72% w Play, 86% w T-Mobile i 90% w Orange między 1. kwartałem 2024 r. a 1. kwartałem 2025 r. Podczas gdy Orange był liderem polskiego rynku w pierwszym kwartale ze średnią prędkością pobierania 5G wynoszącą 222,11 Mb/s, przewaga operatora znacznie się zmniejszyła wraz z postępem budowy średniego pasma T-Mobile, przy czym T-Mobile odnotowuje obecnie medianę prędkości pobierania 5G na poziomie 201,76 Mb/s, znacznie wyprzedzając odpowiednio trzeciego i czwartego Play (122,64 Mb/s) i Plusa (116,76 Mb/s).

Przewaga Plusa w spójności 5G maleje, gdy przewaga pasma 2600 MHz ustępuje wraz z wdrożeniem pasma średniego
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Pomimo utraty pozycji lidera pod względem mediany prędkości pobierania 5G, Plus nadal prowadzi w 10. percentylu (29,44 Mb/s w 1. kwartale 2025 r.), co oznacza, że abonenci w obszarach o najniższych wynikach nadal cieszą się stosunkowo lepszymi prędkościami niż abonenci konkurencyjnych sieci. Przewaga ta jest prawdopodobnie związana z mniejszą zależnością Plusa od DSS. Jednak T-Mobile (24,48 Mb/s) i Orange (21,88 Mb/s) szybko zmniejszają lukę, a ich 10-procentowe prędkości 5G zbliżają się teraz do Plusa. Spójność sieci 5G Plusa, mierzona jako odsetek próbek Speedtest spełniających minimalny próg pobierania i wysyłania 25/3 Mbps, również spadła w ciągu ostatniego roku, chociaż pozostaje liderem rynku.

Tymczasem pod względem wydajności wysyłania, sieć 5G Play była liderem na rynku w pierwszym kwartale 2025 r., odnotowując medianę prędkości 19,33 Mb/s, a następnie Orange (18,99 Mb/s), T-Mobile (17,32 Mb/s) i Plus (14,96 Mb/s).

W przeciwieństwie do znacznych wzrostów prędkości pobierania, jak dotąd istnieją ograniczone dowody na to, że wdrożenie średniego pasma znacznie poprawiło wydajność wysyłania, przy czym mediana prędkości wysyłania była o około 6% niższa w pierwszym kwartale 2025 r. w porównaniu z tym samym kwartałem ubiegłego roku. Rozbieżność ta wynika przede wszystkim z faktu, że wszyscy czterej operatorzy nadal wdrażają 5G w trybie non-standalone (NSA), nadal wymagają od urządzeń technologii 4G do obsługi ruchu wysyłania i warstwy sygnałowej. W związku z tym nowo dostępne widmo 3,5 GHz zwiększa przepustowość łącza w dół, ale pozostawia zatłoczoną ścieżkę łącza 4G w górę bez zmian.

Play zyskuje przewagę w wydajności wysyłania danych w sieci 5G
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Inwestycje operatorów we wdrażanie nowej warstwy przepustowości 5G zbiegły się w czasie z szerszymi działaniami w zakresie modernizacji sieci RAN, przekładając się na lepszą jakość usług doświadczanych przez użytkowników w kluczowych zastosowaniach, takich jak wideo streaming i przeglądanie stron internetowych. Na przykład mediana czasu ładowania strony internetowej w sieci T-Mobile poprawiła się o około 4% między 3. kwartałem 2024 r. a 1. kwartałem 2025 r., co stawia ją w czołówce pod tym względem. Tymczasem Orange był liderem pod względem wskaźników wideo, takich jak czas rozpoczęcia, rozdzielczość i nieprzerwane odtwarzanie w ostatnim kwartale.

5G napędza poprawę jakości doświadczeń (QoE) w zastosowaniach takich jak przeglądanie stron internetowych
Speedtest Intelligence® | I kwartał 2025

Inwestycje kapitałowe zwiększają zasięg 5G, ale przepaść cyfrowa między wsią a miastem w Polsce utrzymuje się

Podczas gdy inwestycje w DSS i wdrożenie średniego pasma umożliwiły polskim operatorom poczynienie znaczących postępów w zakresie dostępności 5G, która wzrosła w skali kraju z 28,5% w I kwartale 2024 r. do 43,1% w I kwartale 2025 r., regionalne różnice w zasięgu nadal są cechą charakterystyczną sieci mobilnej w Polsce.

Operatorzy nadali priorytet wdrożeniom 5G w najbogatszych i najbardziej zaludnionych częściach Polski, gdzie światłowody są mocno rozwinięte, w tym w województwach mazowieckim (Warszawa) i pomorskim (Trójmiasto). W tych województwach dostępność 5G osiągnęła ponad 40% pod koniec ubiegłego roku i przyczyniła się do osiągnięcia znacznie wyższych średnich prędkości pobierania niż średnia krajowa.

Dostępność 5G pozostaje wysoce zróżnicowana w Polsce poza obszarami zurbanizowanymi
Speedtest Intelligence® | Dostępność 5G (%) w IV kw. 2024

Natomiast województwa przygraniczne na południu i zachodzie kraju nadal doświadczają znacznie niższych poziomów dostępności 5G. Województwo lubuskie miało najniższą dostępność (23,6% na koniec ubiegłego roku), gdzie występuje mniejsza gęstość zaludnienia i niższe wydatki abonentów, co zmniejsza zachęty komercyjne operatorów do powszechnych inwestycji w 5G. Tendencja ta doprowadziła do powstania znacznej luki prędkości między województwami, a abonenci mobilni w Lubuskiem również doświadczają najniższej mediany prędkości pobierania (59,97 Mb/s) w Polsce, prawie 33% poniżej wiodącego województwa mazowieckiego.

Prędkości pobierania w sieciach mobilnych są niższe na mniej zurbanizowanych obszarach Polski
Speedtest Intelligence® | Mediana prędkości pobierania (Mbps) w IV kw. 2024

Wdrożenie średniego pasma poprawia konkurencyjność mobilną Polski, ale spójność 5G nadal ustępuje regionalnym konkurentom

Z punktu widzenia konkurencyjności regionalnej, intensywne wdrożenia średniego pasma skutecznie przełamały cykl słabej wydajności sieci mobilnej w Polsce, a mediana prędkości pobierania 5G wzrosła średnio o ponad 50% do 160,30 Mb/s między 1. kwartałem 2024 r. a 1. kwartałem 2025 r. Dzięki temu Polska po raz pierwszy wyprzedziła Czechy, Rumunię i Słowację pod względem prędkości pobierania 5G.

Wdrożenia pasma średniego napędzają regionalną konkurencyjność Polski
Speedtest Intelligence® | 2020–2025

Pomimo postępów Polski we wdrażaniu 5G w średnim paśmie, utrzymujące się skutki polegania na DSS i ograniczonej różnorodności widma 5G aż do niedawnej aukcji 700/800 MHz oznaczają, że Polska nadal pozostaje w tyle za swoimi regionalnymi rówieśnikami pod względem spójności sieci 5G. W pierwszym kwartale 2025 r. 82% próbek Speedtest w Polsce spełniło minimalny próg wydajności 5G dla spójnego doświadczenia mobilnego, w porównaniu do 86% na Węgrzech, 89% w Rumunii i 93% w Bułgarii.

Nowo pozyskana różnorodność częstotliwości 5G daje polskim operatorom potężne narzędzie do stymulowania wzrostu ARPU

Wcześniejsza zależność Polski od DSS, wynikająca z ograniczonej różnorodności widma 5G, prawdopodobnie przyczyniła się do wolniejszego wzrostu średniego przychodu na użytkownika (ARPU) w porównaniu z sąsiednimi krajami na przestrzeni ostatnich lat. Polscy operatorzy początkowo wprowadzili taryfy z “5G bez dodatkowych kosztów” dodane do istniejących pakietów 4G, utrzymując ceny na stałym poziomie w celu obrony udziału w rynku (a tym samym utrzymując obniżone poziomy ARPU w porównaniu do regionalnych konkurentów). W połączeniu z zewnętrznym szokiem makroekonomicznym wywołanym znacznie wyższymi cenami energii, stagnacja poziomów ARPU stworzyła trudne warunki operacyjne na polskim rynku i wpłynęła na rentowność operatorów.

Intensywna konkurencja cenowa spowodowała erozję przychodów w Polsce w pierwszej połowie cyklu 5G
Analiza danych GSMA Intelligence | Zmiana procentowa ARPU w usługach mobilnych (I kw. 2020 vs I kw. 2023)

Z kolei na sąsiednich rynkach operatorzy byli w stanie wykorzystać wdrożenie częstotliwości w średnim paśmie zarówno jako korzyści techniczne, jak i marketingowe, przenosząc swoje strategie z konkurencji cenowej na zróżnicowanie oparte na usługach. Pozwoliło im to skuteczniej sprzedawać wyższe poziomy prędkości lub zarabiać na konkretnych rozwiązaniach, takich jak stały dostęp bezprzewodowy (FWA), dla którego działania wdrożone 5G w średnim paśmie nadaje się idealnie.

T-Mobile i Play wyprzedziły konkurentów w tempie wzrostu udziału subskrypcji w ostatnich latach
Analiza danych rynkowych UKE | 2019–2023

Podobnie, opóźniony termin polskiej aukcji 5G dla średniego pasma prawdopodobnie osłabił czynniki po stronie podaży, będące kluczowymi dla napędzania wzrostu konsumpcji danych z sieci mobilnych. W okresie od I kwartału 2020 r. do IV kwartału 2024 r. wolumen ruchu w sąsiedniej Bułgarii po raz pierwszy zrównał się z wolumenem w Polsce, wzrastając 4,8-krotnie w porównaniu do 2,6-krotnego wzrostu w Polsce.

W międzyczasie bułgarscy operatorzy wcześnie wykorzystali dostępność widma w średnim paśmie, aby agresywnie promować konkurencyjne rozwiązania FWA (główny czynnik napędzający ruch mobilny na rynkach rozwiniętych) i wprowadzić tanie taryfy nieograniczonej transmisji danych z mniejszymi ograniczeniami użytkowania.

Polska utrzymuje regionalne prowadzenie w wolumenach danych mobilnych, ale Bułgaria szybko nadrabia
Analiza danych GSMA Intelligence | 2020–2024

Od tego czasu polscy operatorzy starali się powtórzyć sukces Bułgarii, wprowadzając odrębny marketing dla swoich wdrożeń 5G w średnim paśmie, aby odróżnić nowsze wdrożenia 5G w średnim paśmie od wcześniejszych. T-Mobile oparł się na marce “5G Bardziej”, podczas gdy Plus użył sloganu marketingowego “5G Ultra”, aby wskazać dodatkowy wzrost wydajności odblokowany przez ich nowe sieci 5G w lokalizacjach, w których wdrożono dedykowane częstotliwości średniego pasma. Strategia ta stała się częścią szerszej zmiany na rynku, w której wszyscy operatorzy odchodzą od hiper-koncentracji opierającej się na konkurencji cenowej w kierunku strategii cenowych “więcej za więcej”, wspierając poprawę rentowności i ponowny wzrost ARPU.

Polska przoduje w regionalnym wzroście ARPU od momentu rozpoczęcia wdrożeń średniego pasma 5G
Analiza danych GSMA Intelligence | Zmiana procentowa ARPU w usługach mobilnych (I kw. 2023 vs I kw. 2025)

Aktywacja niskiego pasma i postępy w budowie sieci mają na celu wzmocnienie zysków 5G w średnim paśmie

W związku z tym, że polski regulator telekomunikacyjny, UKE, ustanowił jeden z najbardziej ambitnych zobowiązań dotyczących zasięgu w Europie dla ostatnich aukcji częstotliwości średniego i niskiego pasma, operatorzy raczej nie opóźnią komercyjnych wdrożeń w nowo nabytych pasmach 700 i 800 MHz. Oczekuje się, że wdrożenia te rozpoczną się w przyszłym miesiącu i będą miały kluczowe znaczenie dla ustanowienia krajowej warstwy zasięgu 5G, która znacznie poprawi pokrycie ciężko dostępnych miejsc wewnątrz budynków w miastach i zdalnych obszarów wiejskich. Rozszerzony zasięg będzie również wspierał szersze wdrażanie usług głosowych przez LTE (VoLTE), przyspieszając schyłek 3G i uwalniając dodatkowe widmo w paśmie 900 MHz.

Wkrótce powrócimy do tego tematu, aby ocenić, jak polscy operatorzy radzą sobie z wdrażaniem nowych częstotliwości niskopasmowych i jak skutecznie uzupełniają trwający proces wygaszania 3G.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| June 11, 2025

How Spain's Mobile Networks Performed During the Iberian Grid Collapse [Visualized] | Cómo Se Comportaron Las Redes Móviles Españolas Durante El Colapso De La Red Ibérica

Spanish/Español

Variation in outage scale and duration across mobile operators during the April 28th event reinforces the case that robust power resilience is now the single most decisive factor in preserving service continuity in mobile networks

The Iberian grid collapse stands as the starkest demonstration yet of the fragility of mobile network infrastructure precisely when it is needed most. Public scrutiny following the historic event has centred on understanding and ultimately mitigating the societal vulnerabilities stemming from mobile networks’ inherent reliance on a constant grid power supply, which is increasingly difficult to guarantee as severe events become more frequent.

For the first time, and with the goal of fostering deeper understanding of the interdependence between mobile and power infrastructure in Europe, Ookla is publishing detailed data exposing the scale and geographic distribution of mobile network disruptions caused by the April 28th event. Building on our earlier analysis, this research reveals that the impact of the power outage on mobile network infrastructure varied significantly across operators, with differing levels of power backup penetration likely a critical factor shaping the severity experienced by end users.

Key Takeaways:

  • At the peak of the April 28th blackout, more than half of all mobile network users across large parts of Spain were left completely without mobile signal. The proportion of mobile network users experiencing complete service loss (unable to call, text, or use data due to sites going dark) surged from a pre-blackout baseline of under 0.5% to more than 50% across extensive areas of Spain at the peak late on April 28th. This indicates a severe, widespread, and historic collapse of the mobile site grid that deepened throughout the afternoon and evening on the day of the blackout as available power backups were progressively depleted.
  • The timing and distribution of mobile network outages closely tracked the pattern of power grid events, underlining the telecom infrastructure’s vulnerability to even brief interruptions in power supply. Within 30 minutes of the grid failure (by 13:00 CET), the proportion of users with no service surged as small cells and sites with minimal power backup and battery autonomy went offline. After two hours, about 12% of users on the most affected operator had no service. Outage growth then slowed, suggesting that remaining macro sites, likely equipped with four-to-six hour battery banks, kept operating until their reserves ran out, leading to a final sharp wave of service loss in the late evening. The restoration of mobile services tracked the geographically-phased re-energisation of the power grid, with network disruptions persisted longer into the night in parts of Andalusia and Galicia.
  • While severe network outages were observed across all Spanish operators during the blackout, mobile users on the Vodafone network were less likely to experience a complete service loss. Four-to-eight hours after the grid collapse, the interval in which every operator hit its worst point in terms of service loss, Vodafone’s subscribers were, on average, less than half as likely to be left without service as subscribers on Orange’s network and notably less likely than subscribers on Movistar or Yoigo as well.
  • Morocco’s mobile site footprint remained operational throughout April 28th since domestic grid supply was unaffected. However, the country’s reliance on Spain for international connectivity in deeper network layers resulted in cascading failures and severe service degradation. The proportion of mobile users experiencing no service on the Orange Maroc and Maroc Telecom networks remained consistent with the pre-blackout baseline on April 28th, confirming there were no sustained network disruptions at the mobile site level due to grid failure, unlike in Spain and Portugal. However, analysis of Speedtest Intelligence data reveals significant performance degradation still occurred in Morocco, with the median load time for popular websites increasing by more than 20% compared to the same day in the previous week. The quality of experience (QoE) for Orange Maroc subscribers was particularly impacted during the blackout, reportedly due to disruptions in upstream subsea connectivity between Morocco and mainland Spain.

Power Resilience and Energy Management Strategies Shape the Anatomy of Network Outages

The Iberian grid collapse exemplifies a type of stress test becoming increasingly common in Europe—the ability of mobile network infrastructure to withstand prolonged, severe external shocks beyond direct operator, ensuring continuity of service precisely when it is most critical for public safety and societal functioning.

Beyond the April 28th blackout, recent events in the UK and Ireland, where winter storms (especially Storm Éowyn) caused extensive localized damage to electricity distribution networks, and in France, where substation vandalism resulted in brief but severe blackouts in Cannes and Nice, highlight electricity supply disruptions as a principal vulnerability for mobile networks reliant entirely on grid power. These disruptions add to other external vulnerabilities faced by operators, such as terrestrial or subsea fiber connectivity, upstream cloud links, and third-party peering connections.

Power resilience, particularly through battery and generator backup systems at mobile sites, has emerged as a key proactive measure to mitigate network outages resulting from electricity grid disruptions. Simply put, backup power serves a role analogous to public health measures in a pandemic: it strategically delays the onset of outages (extending the operational hours before sites lose power) and reduces the peak severity (limiting the total number of sites simultaneously affected).

Capital investments in network hardening tools like power redundancy can therefore “flatten” the service-impact curve during an outage event in the same way public health measures flattened the infection curve during the coronavirus pandemic. Prolonged and wide-area grid disruptions like the one on April 28th, however, demonstrate that no single measure is a silver bullet and long-term power autonomy is often not economically viable across a large proportion of the site footprint. 

Recognizing this, mobile operators typically implement aggressive energy management measures during power disruptions to maximize site uptime and strategically allocate network resources based on user priority. These measures may include throttling site transmit power to reduce coverage footprints, limiting spectrum diversity to limit carrier aggregation and overall capacity, and temporarily disabling newer technologies such as 5G and Massive MIMO to extend battery and generator runtime.

Differences in the extent of power backup deployment and the strategic use of energy conservation and load-shedding measures shape the anatomy of network outages. Such variations among operators may arise from a diversity of fuel choices for backup power (e.g., batteries might offer long-term monetization potential, including opportunities for resale to the grid, but typically have shorter runtimes), network configurations (such as RAN sharing arrangements and site types, with dense urban small cells facing greater physical constraints for power backup deployments), and subscriber base characteristics (e.g., operators serving a larger rural subscriber base face more complex and costly challenges in enhancing network resilience).

Iberian Grid Collapse Cascaded through Mobile Networks in Spain, Moving in Lockstep with Power Disruptions

Analysis of Ookla® background signal scan data reveals that the April 28th event placed unprecedented stress on mobile networks in Spain, triggering a rapid collapse in site grid density. The historic scale of this collapse severely curtailed the coverage footprint of operator infrastructure, pushing a significant share of Spanish mobile subscribers into a ‘no service’ state, unable to connect to a nearby mobile site and thus temporarily unable to make calls, send texts, or use data.

Geospatial sequencing of the ‘no service’ data calculates the average probability that a mobile network user was left without signal during any given time window and serves as a proxy for the overall proportion of subscribers left with no network access. This methodology illustrates that the impact of the power blackout quickly cascaded through Spain’s mobile networks (closely mirroring the infection curve analogy described earlier):

  • Baseline (Pre-Blackout): Mobile sites were operating as normal. The average proportion of subscribers without service was less than 0.5%, reflecting the very high levels of network availability typical of Spain.
  • Initial Impact (Immediate Aftermath of Blackout): The grid collapsed at ~12:33 CET across the Iberian Peninsula, triggering rectifiers or uninterruptible power supply (UPS) devices at mobile sites to switch over to backup batteries or generators (where these were installed and adequately charged or fueled).

    Within 30 minutes of the voltage drop, the proportion of subscribers without service had climbed well above the pre-event baseline across Spain and the outage curve entered a phase of runaway growth. This limited initial outage impact likely reflected the immediate loss of a small portion of the overall site footprint in areas where power backup was either absent or severely limited in capacity—most commonly at small cell sites in dense urban environments, where physical space restricts battery or generator installations, or at remote rural sites lacking redundancy (or featuring generators that took longer to switch over and come online).

    Notably, the balanced geographical spread of subscribers beginning to experience no service on their devices (i.e. losing network access) at the start of the network outages suggests that the timing of impacts was broadly consistent across Spain, affecting both rural and urban regions. However, the initial severity was more pronounced in areas along the east and south coasts, as well as in the interior of the country, potentially indicating a lower level of power autonomy at sites in these areas.
  • Ramp-Up (2-8 Hours After Blackout): Within two hours of the blackout, the most affected operator had already seen ~12% of users left with no service. After this point, the rate of outage growth slowed temporarily for several hours. This pattern suggests that the power backup profile of Spanish mobile sites was bi- or tri-modal, with a tiered approach to backup capacity employed by operators (i.e., site autonomy was clustered into configurations like two, four or six-hour power resilience, with battery discharge rates determined by amp-hour capacity and site load at each location).

    As a result of this tiered approach to power autonomy and site load variability, a portion of sites continued operating, likely in a reduced state with aggressive energy conservation measures in place (reflected in marked performance degradation observed in Speedtest Intelligence® data), throughout the afternoon and evening of April 28th.

    The eventual depletion of larger power reserves, typically found at major macro sites on lattice or monopole towers, triggered a final sharp wave of network outages four to eight hours after the blackout began. The loss of these wide-area ‘umbrella’ sites in the evening resulted in a substantial share of Spanish mobile subscribers experiencing no service by 21:00 CET, with severe network outages geographically distributed across all of Spain.
  • Peak (8-10 Hours After Blackout): The impact of the blackout on mobile network infrastructure in Spain peaked between 21:00 and 22:00 CET, with more than half of all mobile subscribers left without service across many regions by late evening, just before power began to return. By this stage (about ten hours after the initial power loss), even the most capable battery backups were likely exhausted, leaving only those sites powered by mobile or stationary generators still operational (especially where strategic fuel deliveries could extend uptime). 
  • Recovery (Remainder of April 28th and 29th): Cross-analysis of geospatial sequencing of the no service data with nighttime light emissions detailed in NASA satellite imagery reveals that the recovery of mobile services and the site grid footprint in Spain closely tracked the pattern of grid re-energization. The proportion of users without service began to decline in the mid-afternoon and early evening in the areas where power was first restored, as the grid operator carried out a phased nationwide black-start. This early network recovery was most evident in regions such as the Basque Country, Catalonia, and Castile and León.

    Significant network outages continued into the night in parts of Andalusia and Galicia, meanwhile, mirroring the slower pace of power restoration in these regions. In some parts of Andalusia, for example, more than half of subscribers remained without service by 6:00 a.m. the following morning, only regaining connectivity once power was restored shortly afterwards. The direct relationship between the timing of power restoration and mobile network recovery highlights that operators are wholly dependent on the grid for service continuity once backup systems are inevitably depleted.

Breadth and Depth of Power Autonomy Drives Differences in Network Resilience Outcomes 

The infection curve analogy provides a potent mechanism to visualize and compare network outage profiles and site resilience among Spain’s mobile operators during the blackout. The shape of these outage curves transforms the ‘no service’ data into a story about both network topology and the breadth and depth of power backup deployed across different operators.

In the context of the outage curves, the point where each curve rises from the baseline reflects the level of power autonomy or battery/generator depth. The height of the peak shows how evenly that autonomy is distributed across the site footprint, while the length of the tail can reveal the geographical skew of subscribers within each operator’s network.

On April 28th, Vodafone exhibited the earliest and lowest outage peak in Spain. The probability that a subscriber on its network was left without service peaked at about half that of Orange and notably below other operators. This early yet suppressed peak indicates a thin but widely deployed power autonomy layer in its network, with small cells (featuring short UPS reserves) dropping out quickly, while most large macro sites carrying modest batteries or generators with different configurations likely kept at least one carrier alive for several hours. This approach of spreading shallow reserves across most sites flattened Vodafone’s outage peak but also pulled it forward in time.

While Orange’s outage curve did not reach its peak until several hours after Vodafone, it is indicative of a strategy that concentrated on thick battery or generator backup at key sites but left a broad swath of sites vulnerable to synchronized collapse (as reflected in the sharp no service spikes), the higher peak suggests a larger share of its subscriber base was likely left with no service during the blackout.

Movistar’s outage profile fell between Vodafone and Orange in both the timing and height of its peak during the blackout, but the recovery of its site footprint was significantly more protracted—taking nearly twice as long (almost a day and a half) as the other operators for the proportion of subscribers with no service to drop below 2%. This is likely an artifact of the unique scale of its rural site and subscriber footprint in Spain, where power backup is often more reliant on generators that require manual intervention and are more limited in deployment due to the economic challenges posed by installation in remote areas. 

Network Resilience is about more than Power Redundancy

While the Iberian blackout may have been a black swan event, the wider global trend of escalating climate, energy, and security-driven shocks impacting multiple layers of telecom infrastructure—often beyond the direct control of mobile operators—has elevated network resilience from a secondary consideration to a core design principle. This shift is reflected in more robust policy oversight (as exemplified in countries like Norway and Finland) and is likely to be underpinned by fiscal subsidies that seek to support the deployment of more power resilience solutions at mobile sites.

Network resilience is, however, more than keeping the lights on; it also depends on other important factors like having diverse, independent paths to the wider internet. On the day of the blackout, Moroccan operators that funnel most of their international traffic through Spanish landing stations lost those paths when the grid collapse knocked Spanish routers and data centers offline.

Since the subsea capacity and routing of some Moroccan operators was dependent on a highly concentrated upstream Spain-centered corridor, there was limited immediate fail-over and users experienced sharp service degradation, even though power and equipment inside Morocco never went down. By contrast, operators that had additional fibers to France or Italy suffered more minor disruptions, highlighting how geographic and upstream diversity are just as critical to mobile network resilience as local power autonomy.


Cómo Se Comportaron Las Redes Móviles Españolas Durante El Colapso De La Red Ibérica

La variación en la escala y duración de las interrupciones entre los operadores de telefonía móvil durante el evento del 28 de abril refuerza la idea de que una sólida capacidad de recuperación energética es ahora el factor más decisivo para garantizar la continuidad del servicio en las redes móviles.

El colapso de la red ibérica es la demostración más clara de la fragilidad de la infraestructura de las redes móviles precisamente cuando más se necesita. El debate público tras el histórico suceso se ha centrado en comprender y, en última instancia, mitigar las vulnerabilidades sociales derivadas de la dependencia inherente de las redes móviles de un suministro constante de energía de la red, que es cada vez más difícil de garantizar a medida que los incidentes graves se hacen más frecuentes.

Por primera vez, y con el objetivo de fomentar una comprensión más profunda de la interdependencia entre la infraestructura móvil y la eléctrica en Europa, Ookla publica datos detallados que muestran la escala y la distribución geográfica de las interrupciones de la red móvil causadas por el apagón del 28 de abril. Sobre la base de nuestro análisis anterior, esta investigación revela que el impacto del corte de energía en la infraestructura de red móvil varió significativamente entre los operadores, y que los diferentes niveles de penetración de la energía de respaldo son probablemente un factor crítico que determina la gravedad que experimentan los usuarios finales.

Principales Conclusiones:

  • En el punto álgido del apagón del 28 de abril, más de la mitad de los usuarios de redes móviles de amplias zonas de España se quedaron completamente sin señal móvil. La proporción de usuarios de redes móviles que experimentaron una pérdida completa del servicio (sin poder llamar, enviar mensajes de texto o utilizar datos debido a que los sitios se habían quedado sin señal) pasó de un valor de referencia previo al apagón inferior al 0,5% a más del 50% en amplias zonas de España en el punto álgido del 28 de abril. Esto indica un colapso grave, generalizado e histórico de la red de telefonía móvil que se agravó durante la tarde y la noche del día del apagón a medida que se agotaban progresivamente las reservas de energía disponibles.
  • El momento y la distribución de los cortes de la red móvil siguieron el patrón de los incidentes de la red eléctrica, lo que evidencia la vulnerabilidad de la infraestructura de telecomunicaciones a las interrupciones, incluso breves, del suministro eléctrico. En los 30 minutos siguientes al fallo de la red (a las 13:00 CET), la proporción de usuarios sin servicio aumentó a medida que se desconectaban las células pequeñas y los emplazamientos con un mínimo de reserva de energía y autonomía de batería. Al cabo de dos horas, alrededor del 12% de los usuarios del operador más afectado carecían de servicio. El aumento de los cortes se ralentizó a continuación, lo que sugiere que los macroemplazamientos restantes, probablemente equipados con bancos de baterías de cuatro a seis horas de autonomía, siguieron funcionando hasta que se agotaron sus reservas, lo que provocó una última y brusca oleada de pérdidas de servicio a última hora de la tarde. El restablecimiento de los servicios móviles siguió el ritmo de la reenergización geográficamente escalonada de la red eléctrica, con interrupciones de la red que se prolongaron hasta bien entrada la noche en partes de Andalucía y Galicia. 
  • Aunque durante el apagón se observaron graves cortes de red en todos los operadores españoles, los usuarios de telefonía móvil de la red de Vodafone tuvieron menos probabilidades de sufrir una pérdida completa del servicio. Entre cuatro y ocho horas después del colapso de la red, el intervalo en el que cada operador alcanzó su peor punto en términos de pérdida de servicio, los abonados de Vodafone tuvieron, de media, menos de la mitad de probabilidades de quedarse sin servicio que los abonados de la red de Orange y notablemente menos probabilidades también que los abonados de Movistar o Yoigo.
  • La red de telefonía móvil de Marruecos permaneció operativa durante todo el 28 de abril, ya que el suministro de la red nacional no se vio afectado. Sin embargo, la dependencia del país de España para la conectividad internacional en capas más profundas de la red provocó fallos en cascada y una grave degradación del servicio. La proporción de usuarios de telefonía móvil sin servicio en las redes de Orange Maroc y Maroc Telecom se mantuvo el 28 de abril en el mismo nivel que antes del apagón, lo que confirma que no se produjeron interrupciones sostenidas de la red en los emplazamientos de telefonía móvil debido a fallos de la red, a diferencia de lo ocurrido en España y Portugal. Sin embargo, el análisis de los datos de Speedtest Intelligence revela que en Marruecos se siguió produciendo una degradación significativa del rendimiento, con un aumento de más del 20% en el tiempo medio de carga de los sitios web más populares en comparación con el mismo día de la semana anterior. La calidad de la experiencia (QoE) de los abonados de Orange Maroc se vio especialmente afectada durante el apagón, al parecer debido a interrupciones en la conectividad submarina ascendente entre Marruecos y España continental.

La resiliencia eléctrica y las estrategias de gestión de la energía determinan la anatomía de los cortes de red

El colapso de la red ibérica ejemplifica un tipo de prueba de resistencia cada vez más habitual en Europa: la capacidad de la infraestructura de redes móviles para resistir perturbaciones externas graves y prolongadas más allá del operador directo, garantizando la continuidad del servicio, precisamente cuando es más crítico para la seguridad pública y el funcionamiento de la sociedad.

Más allá del apagón del 28 de abril, los recientes sucesos en el Reino Unido e Irlanda, donde las tormentas invernales (especialmente la tormenta Éowyn) causaron grandes daños localizados en las redes de distribución eléctrica, y en Francia, donde el vandalismo en subestaciones provocó breves pero graves apagones en Cannes y Niza, ponen de manifiesto que las interrupciones del suministro eléctrico son una de las principales vulnerabilidades de las redes móviles que dependen totalmente de la red eléctrica. Estas interrupciones se suman a otras vulnerabilidades externas a las que se enfrentan los operadores, como la conectividad de fibra terrestre o submarina, los enlaces ascendentes en la nube y las conexiones igualitarias de terceros.

La resiliencia energética, en particular mediante sistemas de baterías y generadores de reserva en los emplazamientos móviles, ha surgido como una medida proactiva clave para mitigar los cortes de red derivados de las interrupciones de la red eléctrica. En pocas palabras, la energía de reserva desempeña un papel análogo al de las medidas de salud pública en una pandemia: retrasa estratégicamente el inicio de los cortes (ampliando las horas operativas antes de que los sites se queden sin energía) y reduce la gravedad máxima (limitando el número total de sitios afectados simultáneamente).

Por tanto, las inversiones de capital en herramientas de refuerzo de la red, como la redundancia de energía, pueden “aplanar” la curva de impacto del servicio durante un apagón, del mismo modo que las medidas de salud pública aplanaron la curva de infección durante la pandemia de coronavirus. Sin embargo, las interrupciones prolongadas y generalizadas de la red, como la del 28 de abril, demuestran que ninguna medida por sí sola es la panacea y que la autonomía energética a largo plazo no suele ser económicamente viable en una gran proporción de la huella del emplazamiento. 

Conscientes de ello, los operadores de telefonía móvil suelen aplicar medidas agresivas de gestión de la energía durante las interrupciones del suministro para maximizar el tiempo de actividad de los emplazamientos y asignar estratégicamente los recursos de red en función de la prioridad de los usuarios. Estas medidas pueden incluir el estrangulamiento de la potencia de transmisión del emplazamiento para reducir las huellas de cobertura, la limitación de la diversidad del espectro para limitar la agregación de portadoras y la capacidad global, y la desactivación temporal de tecnologías más nuevas como 5G y Massive MIMO para ampliar el tiempo de funcionamiento de la batería y el generador.

Las diferencias en el alcance del despliegue de respaldo de energía y el uso estratégico de medidas de conservación de la energía y reducción de la carga conforman la anatomía de los cortes de red. Estas variaciones entre operadores pueden deberse a la diversidad de combustibles elegidos para la energía de reserva (por ejemplo, las baterías pueden ofrecer un potencial de monetización a largo plazo, incluidas las oportunidades de reventa a la red, pero suelen tener tiempos de funcionamiento más cortos), configuraciones de red (como los acuerdos de compartición de RAN y los tipos de emplazamientos, con pequeñas células urbanas densas que se enfrentan a mayores limitaciones físicas para los despliegues de energía de reserva) y características de la base de abonados (por ejemplo, los operadores que atienden a una base de abonados rurales más grande se enfrentan a retos más complejos y costosos para mejorar la resiliencia de la red).

El colapso de la red ibérica se propagó en cascada a través de las redes móviles en España, moviéndose al unísono con las interrupciones del suministro eléctrico

El análisis de los datos de escaneo de señales de fondo de Ookla® revela que el incidente del 28 de abril provocó una tensión sin precedentes en las redes móviles de España, desencadenando un rápido colapso en la densidad de la red. La escala histórica de este colapso redujo gravemente la huella de cobertura de la infraestructura del operador, empujando a una parte significativa de los abonados móviles españoles a un estado de “sin servicio”, incapaces de conectarse a un sitio móvil cercano y, por tanto, temporalmente incapaces de hacer llamadas, enviar mensajes de texto o utilizar datos. 

La secuenciación geoespacial de los datos de “sin servicio” calcula la probabilidad media de que un usuario de red móvil se quedara sin señal durante una ventana temporal determinada y sirve como indicador de la proporción global de abonados que se quedan sin acceso a la red. Esta metodología ilustra que el impacto del apagón se propagó rápidamente en cascada por las redes móviles españolas (reflejando fielmente la analogía de la curva de infección descrita anteriormente):

  • Línea de base (antes del apagón). Los sitios móviles funcionaban con normalidad. La proporción media de abonados sin servicio era inferior al 0,5%, lo que refleja los altísimos niveles de disponibilidad de red típicos de España.
  • Impacto inicial (inmediatamente después del apagón). La red se colapsó en torno a las 12:33 CET en toda la Península Ibérica, lo que provocó que los rectificadores o los dispositivos de alimentación ininterrumpida (SAI) de las ubicaciones móviles pasaran a utilizar baterías o generadores de reserva (cuando éstos estaban instalados y adecuadamente cargados o alimentados). 

    A los 30 minutos de la caída de tensión, la proporción de abonados sin servicio había superado con creces la línea de base anterior al incidente en toda España y la curva de cortes entró en una fase de crecimiento descontrolado. Es probable que este impacto inicial limitado de los cortes reflejara la pérdida inmediata de una pequeña parte de la huella total del emplazamiento en zonas en las que no había suministro eléctrico de reserva o su capacidad era muy limitada, normalmente en emplazamientos de células pequeñas en entornos urbanos densos, donde el espacio físico restringe la instalación de baterías o generadores, o en emplazamientos rurales remotos sin redundancia (o con generadores que tardaron más en conectarse).

    Cabe destacar que la distribución geográfica equilibrada de los abonados que empezaron a quedarse sin servicio en sus dispositivos (es decir, a perder el acceso a la red) al inicio de los cortes de red sugiere que el momento de los impactos fue en general coherente en toda España, afectando tanto a regiones rurales como urbanas. Sin embargo, la gravedad inicial fue más pronunciada en las zonas situadas a lo largo de las costas este y sur, así como en el interior del país, lo que podría indicar un menor nivel de autonomía eléctrica en los emplazamientos de estas zonas. 
  • Recuperación (2-8 horas después del apagón). A las dos horas del apagón, el operador más afectado ya había visto cómo en torno al 12% de los usuarios se quedaban sin servicio. A partir de ese momento, el ritmo de crecimiento de los cortes disminuyó temporalmente durante varias horas. Este patrón sugiere que el perfil de reserva de energía de los sitios móviles españoles era bimodal o trimodal, con un enfoque escalonado de la capacidad de reserva empleada por los operadores (es decir, la autonomía de los sitios se agrupaba en configuraciones como resiliencia de energía de dos, cuatro o seis horas, con tasas de descarga de la batería determinadas por la capacidad de amperios-hora y la carga del sitio en cada ubicación).

    Como resultado de este enfoque escalonado de la autonomía energética y de la variabilidad de la carga del emplazamiento, una parte de los emplazamientos siguieron funcionando, probablemente en un estado reducido con medidas agresivas de conservación de la energía (reflejadas en la marcada degradación del rendimiento observada en los datos de Speedtest Intelligence®), durante toda la tarde y noche del 28 de abril. 

    El agotamiento final de las grandes reservas de energía, que suelen encontrarse en los principales macro-emplazamientos situados en torres de celosía o monoposte, desencadenó una última oleada de cortes de red entre cuatro y ocho horas después del inicio del apagón. La pérdida de estos emplazamientos “paraguas” de área amplia por la noche provocó que una parte sustancial de los abonados móviles españoles se quedaran sin servicio a las 21:00 CET, con graves cortes de red distribuidos geográficamente por toda España.
  • Pico (8-10 horas después del apagón). El impacto del apagón en la infraestructura de la red móvil en España alcanzó su punto álgido entre las 21:00 y las 22:00 CET, con más de la mitad de todos los abonados móviles sin servicio en muchas regiones a última hora de la tarde, justo antes de que empezara a volver la electricidad. Para entonces (unas diez horas después de la pérdida inicial de energía), incluso las baterías de reserva más potentes estaban probablemente agotadas, por lo que sólo quedaban operativas las instalaciones alimentadas por generadores móviles o fijos (especialmente en los casos en que el suministro estratégico de combustible podía prolongar el tiempo de actividad).

  • Recuperación (resto de los días 28 y 29 de abril). El análisis cruzado de la secuencia geoespacial de los datos de ausencia de servicio con las emisiones de luz nocturnas detalladas en las imágenes de satélite de la NASA revela que la recuperación de los servicios móviles y la huella de la red de los emplazamientos en España siguieron de cerca el patrón de reenergización de la red. La proporción de usuarios sin servicio empezó a disminuir a media tarde y a primera hora de la noche en las zonas donde primero se restableció el suministro eléctrico, a medida que el operador de la red realizaba un arranque en negro por fases en todo el país. Esta recuperación temprana de la red fue más evidente en regiones como el País Vasco, Cataluña y Castilla y León.

    Mientras tanto, en algunas zonas de Andalucía y Galicia los cortes de red continuaron durante la noche, reflejando el ritmo más lento del restablecimiento del suministro eléctrico en estas regiones. En algunas zonas de Andalucía, por ejemplo, más de la mitad de los abonados seguían sin servicio a las 6 de la mañana del día siguiente, y sólo recuperaron la conectividad cuando se restableció el suministro poco después. La relación directa entre el momento del restablecimiento del suministro eléctrico y la recuperación de la red móvil pone de manifiesto que los operadores dependen totalmente de la red para la continuidad del servicio una vez que los sistemas de reserva se agotan inevitablemente.

La amplitud y la profundidad de la autonomía eléctrica determinan las diferencias en los resultados de la recuperación de la red 

La analogía de la curva de infección proporciona un potente mecanismo para visualizar y comparar los perfiles de interrupción de la red y la capacidad de recuperación de los emplazamientos entre los operadores móviles españoles durante el apagón. La forma de estas curvas de cortes transforma los datos de “ausencia de servicio” en una historia sobre la topología de la red y la amplitud y profundidad de la reserva de energía desplegada por los distintos operadores.

En el contexto de las curvas de interrupciones, el punto en el que cada curva se eleva desde la línea de base refleja el nivel de autonomía eléctrica o la profundidad de la batería/generador. La altura del pico muestra hasta qué punto la autonomía se distribuye uniformemente a través de la huella del sitio, mientras que la longitud de la cola puede revelar el sesgo geográfico de los abonados dentro de la red de cada operador.

El 28 de abril, Vodafone exhibió el pico de cortes más temprano y más bajo de España. La probabilidad de que un abonado de su red se quedara sin servicio alcanzó un máximo de aproximadamente la mitad que el de Orange y notablemente por debajo de otros operadores. Este pico, temprano pero suprimido, indica una capa de autonomía energética delgada pero ampliamente desplegada en su red, con células pequeñas (que cuentan con reservas cortas de SAI) que se quedan sin servicio rápidamente, mientras que la mayoría de los grandes macroemplazamientos que llevan baterías modestas o generadores con diferentes configuraciones probablemente mantuvieron vivo al menos a un operador durante varias horas. Este planteamiento de repartir reservas poco profundas entre la mayoría de los emplazamientos aplanó el pico de cortes de Vodafone, pero también lo adelantó en el tiempo.

Aunque la curva de cortes de Orange no alcanzó su pico hasta varias horas después que la de Vodafone, es indicativa de una estrategia que se concentró en una reserva de baterías o generadores de gran capacidad en los emplazamientos clave, pero que dejó una amplia franja de emplazamientos vulnerables al colapso sincronizado (como reflejan los fuertes picos sin servicio), el pico más alto sugiere que una mayor parte de su base de abonados probablemente se quedó sin servicio durante el apagón.

El perfil de interrupción de Movistar se situó entre el de Vodafone y Orange tanto en el momento como en la altura de su pico durante el apagón, pero la recuperación de su huella de sitios fue significativamente más prolongada, tardando casi el doble de tiempo (casi un día y medio) que los otros operadores para que la proporción de abonados sin servicio cayera por debajo del 2%. Es probable que esto se deba a la escala única de su presencia rural y de abonados en España, donde la energía de reserva suele depender más de generadores que requieren intervención manual y cuyo despliegue es más limitado debido a las dificultades económicas que plantea la instalación en zonas remotas.

La resiliencia de la red va más allá de la redundancia energética

Si bien el apagón en la Península Ibérica pudo haber sido un evento inesperado, la creciente tendencia global de crisis climáticas, energéticas y de seguridad que impactan múltiples capas de la infraestructura de telecomunicaciones —a menudo fuera del control directo de los operadores móviles— ha elevado la resiliencia de la red de una consideración secundaria a un principio de diseño fundamental. Este cambio se refleja en una supervisión política más exhaustiva (como se ejemplifica en países como Noruega y Finlandia) y es probable que se sustente en subsidios fiscales que buscan apoyar el despliegue de más soluciones de resiliencia energética en las estaciones móviles.

La resiliencia de la red, sin embargo, va más allá de mantener las luces encendidas; también depende de otros factores importantes, como contar con rutas diversas e independientes hacia una internet más amplia. El día del apagón, los operadores marroquíes que canalizan la mayor parte de su tráfico internacional a través de estaciones de aterrizaje españolas perdieron esas rutas cuando el colapso de la red dejó fuera de servicio a los routers y centros de datos españoles.

Dado que la capacidad submarina y el enrutamiento de algunos operadores marroquíes dependían de un corredor de aguas arriba altamente concentrado y centrado en España, la conmutación por error inmediata fue limitada y los usuarios experimentaron una fuerte degradación del servicio, a pesar de que el suministro eléctrico y los equipos dentro de Marruecos nunca se interrumpieron. Por el contrario, los operadores que contaban con fibra adicional con Francia o Italia sufrieron interrupciones menores, lo que pone de manifiesto cómo la diversidad geográfica y de aguas arriba es tan crucial para la resiliencia de la red móvil como la disponibilidad de energía local.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| May 19, 2025

Solving the Indoor Connectivity Problem

Indoor connectivity challenges have intensified as modern insulation materials, the shift to mid-band spectrum, and the sunset of 3G networks prevent outdoor mobile sites from reliably penetrating buildings

As much as 80% of all mobile data usage originates from indoor environments like homes, offices and shops. However, mobile networks were initially designed with an ‘outside-in’ approach—relying on outdoor towers to deliver coverage, with the expectation that the signal would reach indoors without being specifically optimised to do so. This strategy helped minimise deployment costs and was based on the assumption that indoor connectivity could be provided by low-band spectrum layered over the macro mobile network, with higher data rate demands met by home broadband and public Wi-Fi networks indoors. 

Consumers have come to rely on mobile data to serve their indoor browsing needs and expect performance parity as they move around from home, work, the shops, and everywhere in between. Even where Wi-Fi and related features like VoWiFi are available and sufficiently fast, in-building mobile coverage remains critical for last resort access to basic telephony features like calling and texting to ensure reliable access to emergency service networks. Indeed, in many advanced European markets, operators and regulators prioritise routing 112 emergency calls over mobile networks using VoLTE rather than Wi-Fi, as VoLTE offers greater reliability and quality of service through dedicated voice packet routing on mobile networks.

But if indoor connectivity is so important, why is it still so lacklustre? While there is no one easy answer, there are a few clear contributing factors.

More mid-band spectrum in 5G networks introduces new propagation challenges

One of the biggest barriers to good indoor connectivity lies in how networks are designed, and this challenge is becoming more common with the deployment of 5G. The trend towards higher frequency spectrum for 5G (e.g. 3.5 GHz mid-band) limits the ability of the existing mobile network site grid to provide high-speed mobile coverage deep indoors. This is due to the more constrained propagation characteristics of this spectrum. Simply put, the signals that mid-band 5G networks rely on struggle to penetrate the materials in their path when the user is indoors.

Lower frequency signals do not face this problem to the same extent, but their utility has become more limited over time. While the lower frequency spectrum (e.g. 800/900 MHz with 3G/4G and 700 MHz more recently with 5G) traditionally used to provide in-building mobile coverage previously sufficed, the significant increase in the density of devices and the intensity of their data traffic demands mean these frequencies alone are unable to support the higher performance attributes often expected with 5G, particularly in dense urban settings.

Because of this, the traditional approach of outside-in network design, where signals are transmitted from the macro coverage layer of a lattice or monopole-based high site into a cluster of buildings, is no longer fit for purpose in the absence of investment in network densification if demands for reliably fast connectivity indoors are to be met. 

Modern insulation materials turn buildings into Faraday cages

Network design is not the only contributing factor to the profile of signal propagation. While it is true that the signals typically used for 5G networks struggle to travel through buildings, some materials present a bigger challenge than others.

The use of modern insulation materials in new-build and retrofitted developments is posing a significant challenge for mobile operators. Take low-E glass, for example – a type of energy-efficient glass with a microscopic coating designed to reduce energy consumption, which is becoming a commonplace alternative to double glazing. Low-E glass has a significant negative impact on radio signal propagation, and with its growing use in retail and office buildings, the indoor connectivity problem is set to worsen, especially with the use of higher frequency bands

As these kinds of construction materials – those that significantly increase signal attenuation and effectively turn buildings into Faraday cages – become more widely used, network design and building design must go hand-in-hand. Otherwise, the ability of 5G signals to penetrate newer buildings will continue to be diminished.

Technology sunsets require deep network modernization to replicate legacy coverage footprints

The sunset of legacy network technologies like 2G (in markets such as Switzerland and the US) and 3G (in most developed markets) has introduced further challenges as operators seek to preserve indoor coverage levels while upgrading equipment and repurposing frequencies.The process of improving network performance and optimising long-term operating costs with technology sunsets is not as simple as removing and replacing outdated equipment. Operators need to ensure legacy end user devices are upgraded to take advantage of 4G and 5G networks and that older mobile sites are refreshed with modern radio equipment to ensure there is full continuity in coverage levels.

Time Without Service Rose Across All Polish Operators in 2024 as the 3G Sunset Advanced
Speedtest Intelligence® | FY 2023 – 2024

Analysis of Speedtest Intelligence data has revealed a concerning trend of increased time spent on 2G networks or with no service at all in several advanced markets where operators have been slower to repurpose spectrum employed by legacy technologies upon sunsetting 3G. This has manifested in increased reports of dropped calls and other mobile connectivity issues, particularly in areas where decommissioned 3G coverage has yet to be fully replaced by 4G or 5G networks.

Policy goals and incentives place emphasis on outdoor coverage, treating indoor access as incidental

Governments and regulators around the world have historically focused headline policy goals on achieving outdoor population coverage targets. This model has overlooked the importance of indoor mobile coverage, contributing to poor outcomes throughout in-building environments and a lack of public data on the extent of indoor coverage gaps. Some countries, like Ireland and Germany, have made progress by mandating minimum coverage levels at buildings and infrastructure of national importance as part of spectrum licence conditions. In the Irish context, for example, this includes a requirement to provide a minimum 30 Mbps service across key infrastructure sites like train stations and hospitals, as well as community hubs and tourist locations. 

These types of progressive policies, as well as those being adopted by city governments to increase building access for mobile sites through amendments to planning and zoning conditions on future renewals and large-scale commercial and residential developments, can play a positive role in stimulating better indoor coverage outcomes by re-aligning deployment incentives and removing obstacles.  

New deployment models, richer data insights, and greater policy oversight can drive better indoor outcomes

While consumers expect consistently high-performing in-building mobile performance, the path to get there is not a simple one. There is no one-stop solution to the indoor connectivity problem.

That said, the neutral host model is emerging as a key solution to improve in-building mobile outcomes, providing multi-operator access to promote fair competition and share deployment costs, typically based on small cell solutions like the Ericsson Radio Dot. Freshwave (UK) and Proptivity (Sweden) are early examples of neutral host specialists leading the charge in this space.

While the scaling up of small cell deployments at the street and building level, enabled by the neutral host model, is key to improving indoor performance, there are other factors at play. Operators must prioritise repurposing the spectrum in the wake of 3G sunsetting, and building developers and the planning system should take better account of the accommodations needed to host radio equipment. But if indoor connectivity is truly to see a material improvement, these changes should be underpinned by progressive regulatory policies that measure indoor coverage levels and provide better incentives to improve in-building mobile outcomes and remove barriers to deployment.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| April 29, 2025

Power Outages in Spain and Portugal Test the Resilience of Europe’s Telecoms Infrastructure

The April 28th event highlights concerns about the critical need for resilience and continuity of service for telecom providers

Spain and Portugal are in recovery mode after a historic power outage crippled their national grids on April 28, triggering a cascading failure across mobile network infrastructure. Analysis of Speedtest Intelligence® and Downdetector® data reveals that network performance progressively deteriorated as battery backups, where available, were exhausted, and shifting traffic patterns placed maximum strain on an already stretched mobile site grid. The scale of the disruption—with near-synchronous impact across all operators in both countries—marks the largest stress test of telecommunications infrastructure in Europe in recent memory.

Key Takeaways:

Power outages triggered a rapid, severe, and sustained decline in mobile performance across all operators in Spain and Portugal on April 28, with impacts peaking in the mid-afternoon as backup batteries became depleted. The share of Spanish mobile users experiencing a consistent network connection (defined as minimum 5 Mbps download speeds and 1 Mbps upload speeds) dropped from a baseline of over 90% at 9:00 AM CET on April 28 to 50% by 12:00 PM, reaching a low of 40% by 3 PM. The decline in network consistency was even more pronounced on Portuguese mobile networks, falling below 40% by 2 PM and initially recovering more slowly than in Spain. Median mobile download speeds on April 28 were 73% lower in Spain and 75% lower in Portugal compared to the previous day.

Mobile Network Performance Collapsed in Close Synchrony with Power Grid Outage in Spain and Portugal
Speedtest Intelligence® | 28 April 2025 (CET)

While substantial service disruptions affected all operators, mobile performance remained relatively stronger on Orange and Movistar in Spain, and Vodafone in Portugal, compared to others on April 28. In Spain, Movistar delivered higher mobile download speeds (1.01 Mbps), upload speeds (0.30 Mbps), and lower multi-server latency (190 ms) at the 10th percentile—meaning for the worst-performing user —on April 28 compared to other Spanish operators, with Orange close behind. This suggests that, even in the worst cases, Movistar’s weakest network performance was materially better than that of Yoigo or Vodafone on average. In Portugal, Vodafone showed a clear lead over both NOS and MEO in metrics such as median download speed and latency on April 28, marking a shift from the pre-event trend in which NOS had led on several performance measures.

Consistency Remained Materially Depressed Across All Operators by Midnight on April 28
Speedtest Intelligence® | 28 April 2025 (CET)

The magnitude of service disruption varied across Spain and Portugal, reflecting differences in regional telecoms infrastructure resilience and the timing of power restoration. In Spain, the outer fringes of the mainland—including the northern and Mediterranean coasts as well as the southern and northeastern border regions—experienced the sharpest declines in mobile performance on April 28, but also showed faster recovery throughout the day, closely tracking grid restoration patterns. Median download speeds fell by more than 85% across areas such as the Valencian Community, Galicia, Andalusia, and the Region of Murcia, compared to declines of around 60% in central regions like Castile-La Mancha, Castile and León, and the Community of Madrid. In Portugal, the most significant impacts were likewise concentrated along the north-south and coastal corridor—from Braga and Porto down through Vila Real and Santarém—where download speeds fell by as much as 90%. In contrast, the interior highlands experienced milder declines of less than 40%, possibly reflecting earlier network hardening efforts in response to wildfire risks.

Outer Regions of the Spanish Mainland Suffered Largest Mobile Network Impacts
Speedtest Intelligence® | Comparison of Median Download Speed on April 27 and April 28

Network outages extended beyond declines in mobile performance to include complete loss of service

In practical terms, the service disruptions and declines in mobile performance in Spain and Portugal led to a significant deterioration in quality of experience (QoE) outcomes. Speedtest Intelligence data revealed a sharp rise in web page load times, a decrease in the proportion of mobile users able to stream Full HD videos, and a substantial increase in latency to key gaming and hyperscaler services across both countries on April 28. In Spain, for example, median web page load time rose by more than 20% where access remained available, while in Portugal it increased by more than 27%.

In the few locations where substantial power backup was available at mobile sites, either through batteries or stationary generators, site uptime was more resilient. However, the cascading effects of increased load, driven both by users migrating from nearby offline sites and by subscribers relying on the mobile network as a substitute for fixed broadband, likely played a significant role in depressing mobile network performance.

The large number of mobile users who were left without any network connection for a prolonged period, with no access to data services and only limited access to voice and text, was reflected in a record volume of partial or failed Speedtest sessions observed on the day of the outage, as large numbers of network subscribers attempted to diagnose connectivity issues but lacked a connection altogether to complete a test.

Power Cuts Produced a Major Spike in Telecoms Outage Reports Across Spain and Portugal
Downdetector® | 28 April 2025 (CET)

This likely also explains the unusual pattern of Downdetector outage reports on April 28, which spiked in Spain and Portugal immediately after the power outage took hold, declined during the afternoon as network performance reached its lowest point with backup batteries depleted, and then surged again in the evening as power was restored and users were better able to access a connection to report outages affecting one of their access paths.

The best time to strengthen mobile networks is before the lights go out

The limited penetration of battery backup solutions in the mobile site grids across Spain and Portugal was a key contributor to the scale of network disruption caused by the collapse of the power grid on April 28, providing a historic lesson on the importance of infrastructure redundancy.

The policy success of Nordic countries such as Norway and Finland, where local regulators NKOM and Traficom have intervened with legislative instruments to stipulate a minimum number of hours of continuity of mobile service post-power outage, demonstrates that there are viable solutions to harden mobile network infrastructure. Similar efforts have been observed in Australia, where the government subsidized a ‘Mobile Network Hardening’ program to retrofit 467 cell sites with 12 hours power backup capability.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| April 16, 2025

Mind the Gap: London's 5G Performance Lags Behind Other UK Cities

Londoners spend more time in mobile signal not-spots, or coverage gaps, and experience slower 5G speeds than residents of other UK cities—resulting in poorer performance in everyday tasks such as web browsing.

London is the sprawling metropolis at the heart of the UK economy, home to one of the world’s largest and most lucrative service hubs, supporting a vast network of finance and technology firms. Beyond its strategic time zone and English-language advantage for accessing both American and Asian markets, London’s prosperity has been founded on the availability of world-class infrastructure that facilitates doing business.

The city’s reputation for international competitiveness has not, however, been matched by the quality of its telecommunications infrastructure. In recent years, a flurry of media reports has highlighted the frustrations of Londoners—and visitors alike—that experience frequent issues using mobile devices indoors, underground, and in busy areas. These problems, reported as being more pronounced than in other UK and European cities, typically manifest as poor quality of experience in everyday tasks such as web browsing, video streaming, and gaming.

This article is the first and a high-level prelude to a series exploring the competitiveness of mobile networks in European towns and cities—starting in the UK with city-level comparisons to London, and followed by a deeper, more comprehensive analysis among international peers coming in research later this year. 

Key Takeaways:

  • London lags behind the UK’s largest cities across key 5G performance indicators, and the gap to top-performing Glasgow is widening. In Q1 2025, London trailed other UK cities in 5G network consistency—a key indicator of performance at the lower end of the user experience—as well as in median download and upload speeds. Mobile users in London and Belfast experienced the weakest outcomes among UK cities, with median 5G download speeds of approximately 115 Mbps in both cities, significantly behind Glasgow’s 185 Mbps. London’s marked underperformance makes the UK unique in Western European terms—not only are the disparities between its major cities wider, but it is also unusual for the capital to be the primary laggard.
  • Mobile users in London spend more time in signal not-spots with no service than residents of other UK cities, reflecting lingering coverage gaps indoors and across key transport routes. The proportion of Londoners spending the majority of their time in locations with no service (0.7%) remained higher than in other UK cities in Q1 2025, but has improved significantly from 3.7% in Q1 2023. This progress reflects operator investments in network densification through small cells and the ongoing rollout of mobile coverage across the London Underground—historically one of the city’s largest mobile not-spots—which have together enhanced overall network availability in the capital. Time spent on 2G networks increased, however, across several UK cities over the last year, including Birmingham and Manchester, as the advancement of the 3G sunset in the UK contributed to greater propensity for 2G fallback.
  • The gap in 5G availability between the UK’s major cities and the national average has significantly narrowed over the past year. In Q1 2024, Leeds led UK cities in 5G availability, with a 21 percentage point gap above the national average. By Q1 2025, London had taken the lead in 5G availability among major UK cities, and that gap above the national average had narrowed to 13 percentage points. This trend reflects progress in 5G network expansion in smaller UK towns and rural areas in recent months, which has moved at a faster pace than coverage improvements in larger cities. Overall, median 5G download speeds fell by more than 7% on average across major UK cities between Q1 2024 and Q1 2025, likely reflecting the impact of shifting network load from older technologies onto 5G, which contributed to broader improvements in overall mobile network performance in most UK cities in the same period.

A confluence of factors has created unique headwinds for mobile network deployments in UK cities in recent years, particularly in dense urban settings like London

The deployment of 5G networks in higher-frequency spectrum—most commonly the 3.5 GHz band—continues to present significant challenges for operators globally. Like their counterparts across Europe, UK mobile operators have had to invest heavily in network densification during the 5G cycle. The widespread deployment of small cells at street level across UK cities illustrates the scale of effort required to increase network capacity and overcome the more limited propagation attributes of mid-band spectrum.

Over time, the city environment itself has become increasingly hostile to the operation of high-performing mobile networks. Across developed markets, advancements in building design and stricter regulations have led to a proliferation of highly insulated, airtight structures. These developments often incorporate low-E glass, metal cladding, and reinforced concrete—materials that, collectively, turn new and retrofitted buildings into de facto Faraday cages. London, in particular, presents unique challenges among UK cities, with a high concentration of high-rise buildings featuring deep floorplates. 

Indoor Mobile Not-Spots Have Proliferated Across Central London, Particularly in Dense Settings with New and Retrofitted Builds (Image: Ookla Cell Analytics)

While the UK’s Part L Building Regulations are not unique or unusually stringent by European standards, they have evolved alongside a set of factors particular to the UK context that have significantly hindered mobile operators’ ability to deliver high-performing 5G networks in dense urban environments. The roots of these factors stem as far back as 2017, well before the commercialization of the country’s first 5G networks, when the UK government introduced changes to the Electronics Communications Code (ECC) in an effort to accelerate mobile network rollouts and reduce costs by streamlining access to land for telecommunications deployments. 

The Digital Economy Act, which reformed the ECC, granted mobile operators and tower companies greater rights to access land on more favorable financial terms in the UK. The intention was to curb inflated lease costs, particularly in cases where landowners appeared to demand “ransom rents.” However, rather than accelerating network rollouts, the reforms triggered widespread legal disputes, uncertainty in lease negotiations, and delays in site access and upgrades. 

The impact of these land access reforms has been especially acute in dense urban settings such as London, where rooftop deployments play a disproportionate role due to limited ground-level space for mobile equipment. In London, the sheer number of individual property owners—including private landlords, commercial building managers, and housing associations—results in highly fragmented land ownership, making rooftop sites significantly more complex to manage, both legally and logistically, than rural ground leases.

The Combination of Increasing Building Density, Use of New Insulation Materials, and Decline in Rooftop Site Availability Has Resulted in More Frequent Fallback to Less Capable Low-Band Spectrum in UK Cities like London (Image: Ookla Cell Analytics)

The EEC further compounded this complexity by disrupting long-standing rooftop leasing arrangements in cities like London, leading to thousands of disputes since 2017 over issues such as ransom rents, blocked site upgrades, and non-renewals. The regulation reduced potential rental income by as much as 80% to 90% for some landlords, significantly discouraging the availability of rooftop space for mobile network deployments. This effect was particularly pronounced in London, where building owners have seen greater commercial value in alternative uses for scarce rooftop space, such as bars, gardens, or solar panel installations, hindering the ability of operators to densify their networks. 

The UK is the only European country to have adopted such a unilateral price-cutting approach to site access during the 5G cycle. To ease tensions between operators and land owners, the UK government introduced further changes in the “2022 Product Security and Telecommunications Infrastructure Act.” These updates aimed to encourage alternative dispute resolution, simplify lease renewals, and extend the provisions from the EEC to agreements signed before 2017. However, the reforms retained the reduced rental model, meaning while procedural barriers were reduced, incentives for property owners to host rooftop sites remained weak, failing to stem the decline in rooftop site availability in cities like London in recent years.

Combined with the UK’s decision to impose stricter controls on the use of telecom equipment from non-European vendors than those seen elsewhere in Europe, which diverted time and resources toward network rebuilds rather than expansion and upgrades, UK operators have faced significant headwinds in deploying mobile network infrastructure during the 5G cycle.

Progress in the 5G rollout belies lingering performance disparities among the UK’s major cities

Despite significant progress countrywide in improving 5G networks with additional sites, more spectrum availability (some of it from the refarming of 3G), and an expanded 5G standalone (SA) footprint, disparities continue to exist among the UK’s cities. The gap between the best- and worst-performing major cities in median 5G download and upload speeds, for example, widened between Q1 2024 and Q1 2025, based on analysis of Speedtest Intelligence® data.

The Gap in 5G Download Speeds Between Glasgow and Other UK Cities Has Widened
Speedtest Intelligence® | Q1 2024 – Q1 2025


In Q1 2025, Glasgow led the UK with median 5G download speeds reaching 185 Mbps, which was as much as 47% higher than in London, the slowest major city, and 24% higher than in Birmingham, the next best performer. This ranking profile extended to 5G network consistency, which measures the proportion of Speedtest samples that meet a minimum download and upload speed threshold of 25 Mbps and 3 Mbps. While more than 85% of Speedtest samples met this threshold in Glasgow, fewer than 75% did in London, which exhibited the lowest consistency rate among major UK cities and was the only one aligned with the national average that includes both rural and urban areas.

London’s underperformance at the lower percentiles of measures like download speeds is particularly notable, as it strongly reflects the experience of mobile users in more challenging conditions—such as at the network edge, during peak hours, or in congested areas. The city’s lower consistency score and weaker 10th percentile download and upload speeds suggest that Londoners are more likely to encounter poor mobile performance compared to residents of other major UK cities.

Londoners Experience Less Consistent 5G Performance Than Residents of Other UK Cities
Speedtest Intelligence® | Q1 2025

The UK stands out in Western Europe for both the scale of the performance gap between its major cities and the unusual fact that its capital is the lagging city. Most regional peers more closely resemble the profile of neighboring France, where Paris ranks among the top three cities nationally for 5G network consistency, as well as median download and upload speeds. In France, the gap in 5G network consistency between the best- and worst-performing cities was as narrow as 5 percentage points in Q1 2025—a disparity that is half that of the UK.

The UK's Cities Exhibit a Greater Range in 5G Consistency Than Other Western European Countries
Speedtest Intelligence® | Q1 2025

In practical terms, London’s underperformance in metrics like 5G download speed and consistency translates into poorer QoE outcomes in everyday tasks like web browsing. In Q1 2025, for example, median web page load times to popular global websites were higher in London than in nine out of ten other major UK cities.

Londoners Spend More Time Waiting on Popular Websites to Load
Speedtest Intelligence® | Q1 2025

Mobile not-spots continue to be a fixture of everyday life in UK cities, particularly in London

The combination of factors outlined earlier, including the shift toward insulation materials that inhibit signal propagation, the collapse in rooftop rental fees reducing access to mobile sites, and the use of higher-frequency spectrum for 5G, has posed challenges for mobile operators across all UK cities seeking to reduce the prevalence of mobile not-spots. These challenges have been particularly pronounced in the cities with the highest levels of density, most notably London.

Deep indoor and underground spaces (e.g., transport systems like the London Underground network) remain the primary contributors to time spent with no mobile signal or fallback to 2G networks. These cell edge scenarios are highly disruptive for the end-user, resulting in limited access to basic telephony features like texting and calling and a substantial increase in device-side power consumption. 

Londoners Spend More Time in Mobile Not-Spots Than the UK Average
Speedtest Intelligence® | Q1 2024 – Q1 2025

The proportion of mobile users in London spending the majority of their time in locations with no network access at all (0.7%) was higher than in other major UK cities in Q1 2025 (an observation related to the capital city that again defies Western European norms). By contrast, less than 0.3% of mobile users in Belfast, Bristol and Sheffield spent the majority of their time in not-spots in the same period. Overall, time spent with no service accounted for as much as 2.6% of quarterly network usage in Q1 2025 in London, significantly higher than the national average.

Despite the disproportionate scale of mobile not-spots lingering in London, recent operator investments in network densification and progress in the ongoing rollout of 4G and 5G coverage throughout the London Underground network are driving dramatic improvements in outcomes. The proportion of Londoners spending the majority of their time in locations with no service has more than halved over the last two years, reflecting a much more pronounced pace of improvement than other UK cities and putting the capital on course to fall into line with other large cities like Birmingham and Manchester.

The Proportion of Mobile Users Spending the Majority of Their Time on 2G Has Increased in Several UK Cities
Speedtest Intelligence® | Q1 2024 – Q1 2025 (Including Roaming Samples)

The advancement of the UK’s 3G sunset, which is set to be substantially complete by the end of this year, is reflected in a sharp reduction in the proportion of mobile users spending the majority of their time on 3G networks. In London, for example, this proportion fell from over 4.5% in Q1 2023 to less than 0.7% in Q1 2025.

The 3G sunset has, however, contributed to an increase in 2G fallback in UK cities at the cell edge where 4G and 5G networks are unavailable. Time spent on 2G increased across several UK cities over the last year, including Liverpool, where this trend has resulted in a larger share of users spending the majority of their time on 2G than in areas with no service at all (a rarity among UK cities). 

The Decline in 3G Usage Has Been Similarly Rapid Across UK Cities
Speedtest Intelligence® | Q1 2023 – Q1 2025

Cities that take a proactive approach to telecoms feature the best 5G outcomes

Glasgow’s position as the leading UK city in key 5G performance indicators is unlikely to be an outcome achieved by mere chance. Beyond the contribution of inherent structural factors related to building composition, such as a lower prevalence of high-rise developments relative to other major UK cities, Glasgow’s 5G leadership is also likely rooted in its early and proactive approach to supporting telecoms infrastructure.

The city was among the first in Europe to establish a dedicated “Telecoms Unit”, which streamlined access to city-owned assets for telecom deployments, provided standardized agreements for rental fees, and consolidated telecoms functions within the local authority to reduce departmental siloes. This proactive approach facilitates inward investment in network infrastructure and better 5G outcomes. 

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| March 19, 2025

Fiber-Rich, Wi-Fi Poor: Spain Exemplifies the Scourge of Outdated Wi-Fi | Rica en fibra y pobre en Wi-Fi: España ejemplifica la ‘enfermedad’ del Wi-Fi obsoleto

Spanish/Español

Spain leads Europe in fiber deployment but is now paying the price for neglecting modern Wi-Fi CPE, undermining its global competitiveness in fixed broadband performance. 

Spain’s remarkable transformation from a telecoms laggard a decade ago to a global leader in fiber availability has been dizzying in both scale and speed. Widely hailed as a model of best practice, this transformation has played a key role in vaulting the country to the forefront of Europe in economic growth over the last two years, supporting the attraction of inward investment in precision manufacturing, renewables, and a growing digital nomad community.

If deploying fiber to as many doorsteps as possible were a sprint, Spain would have won hands down. But the real race—the marathon of extending gigabit coverage throughout the entire home, beyond merely the doorstep—requires modernizing Wi-Fi customer premises equipment (CPE). Here, Spain is falling behind, eroding its global competitiveness in fixed broadband performance and limiting Spanish ISPs’ ability to differentiate in a market saturated with multiple overlapping fiber builds.

This chasm between the highly capable fiber connections reaching most Spanish homes and the outdated Wi-Fi equipment delivering that connectivity to end devices exemplifies the paradox of ‘old’ fiber markets like Spain. As an early mover in fiber, Spain migrated from copper before modern Wi-Fi 6 and Wi-Fi 7 CPE—designed to fully leverage fiber’s multi-gigabit potential—became widely available.

Key Takeaways

  • Spain features one of the oldest and least capable Wi-Fi footprints in Europe: By the end of 2024, two-thirds of all Wi-Fi connections in Spain still relied on legacy standards (Wi-Fi 4 and Wi-Fi 5) based on Speedtest Intelligence® data, leaving the country notably behind peers with lower fiber penetration, including neighboring France, the United Kingdom, and all Nordic countries. This deep entrenchment of legacy Wi-Fi standards is artificially constraining the performance of Spain’s full-fiber connections, contributing to its underperformance in the Speedtest Global Index™ compared to countries with less extensive fiber deployment.
  • The capabilities of Spain’s Wi-Fi footprint vary significantly across different ISPs: DIGI has distinguished itself  by offering modern CPE with Wi-Fi 6 as standard across its subscriber base, benefiting from its position as a newer entrant without a legacy customer base. This has driven its strong lead in Wi-Fi 6 penetration in Spain—nearly half of all Speedtest samples on DIGI connections in January used Wi-Fi 6 or 7, compared to less than a quarter on Movistar and Vodafone—enhancing its overall fixed broadband performance. By comparison, ISPs that were slow to introduce modern CPE, such as Movistar, or restricted access to subscribers opting for premium equipment rental add-ons, like Vodafone, retain a much larger share of users on legacy Wi-Fi standards.
  • Modern CPE with Wi-Fi 6 and 7 deliver significant performance gains across all ISPs: The gap between advertised fiber speeds to the doorstep (typically achievable via wired Ethernet) and actual Wi-Fi performance is smallest in homes where Wi-Fi 6 and 7 CPE have been deployed. At the end of 2024, median download speeds on Wi-Fi 6 in Spain reached 419.13 Mbps, exceeding Wi-Fi 5 speeds by more than 54% and surpassing Wi-Fi 4 performance by an order of magnitude. Meanwhile, median latency on Wi-Fi 7 connections (19 ms) was notably improved compared to outcomes on earlier Wi-Fi standards. 

Spain is a victim of its own success, having deployed fiber far and wide before the arrival of Wi-Fi 6 and 7

Spain typifies the legacy Wi-Fi challenges now confronting Europe’s early fiber adopters—countries that moved aggressively to deploy full-fiber networks using GPON (Gigabit Passive Optical Network) technology. The market incumbent, Telefónica, began large-scale fiber deployment in the early 2010s, accelerating from 2015. By the end of the decade, Spain had leapfrogged most countries in fiber coverage and the migration from copper-based DSL, with a groundswell of investment driving multiple overlapping fiber builds across many areas.

The scale of Spain’s success in fiber deployment is often under-appreciated. The European Commission’s latest DESI Index reported that over 95% of Spanish households were passed by a full-fiber network—well above the EU average of 64%. This has placed Spain within striking distance of the Commission’s Digital Decade 2030 target of achieving full-fiber coverage across all member states by the end of the decade.

Spain Continues to Lead Europe in Fiber Deployment
European Commission | DESI 2018 – 2024

Spain’s initial fiber rollouts in the early 2010s coincided with Wi-Fi 4 being the de facto standard for many ISP-supplied CPE. Based on a 2009 standard, Wi-Fi 4 offers theoretical maximum download speeds of up to 600 Mbps. By the peak of fiber deployment in the latter half of the decade, Wi-Fi 5 had become the state-of-the-art standard, delivering peak speeds of 3.5 Gbps and gradually becoming dominant. For instance, in 2016, Telefónica’s Movistar fiber CPE featured a dual-band Wi-Fi 5 model, which was considered high-end at the time.

By the time Wi-Fi 6—the first standard truly designed for multi-gigabit fiber based on XGS-PON (the latest optical networking technology enabling symmetrical speeds of up to 10 Gbps)—became available, Spanish ISPs had already deployed tens of millions of legacy CPE. Analysis of Speedtest Intelligence data reveals that Wi-Fi 4 and Wi-Fi 5 CPE have remained deeply entrenched in Spain’s fiber base, collectively accounting for over 75% of all fixed connections by December 2024, based on Speedtest sample share. 

Competitive dynamics play a key role in shaping Wi-Fi outcomes across countries and ISPs

The long tail of legacy Wi-Fi CPE in Spain stands in stark contrast to other fiber-rich countries like neighboring France, another European leader in fiber deployment—though it lagged behind Spain until recent years. By December 2024, Wi-Fi 6 accounted for nearly a third of all Wi-Fi connections in France, compared to less than a quarter in Spain.

Beyond France’s later fiber deployment timeline compared to Spain, broader competitive dynamics and consumer behavior have likely influenced the differences in Wi-Fi adoption between the two countries. While Spain’s fixed market is highly competitive, it has been led by a few large converged players that have traditionally prioritized convergence and bundling over investing in cutting-edge CPE.

For the most part, Spanish ISPs have traditionally competed on price, content, and speed tiers, with Wi-Fi CPE upgrades not seen as a key differentiator. In France, by contrast, the entry of market disruptor Iliad’s Free at the start of the last decade intensified competition not just on price but also on innovation in the ‘internet box.’ For over a decade, Free set the market pace by integrating cutting-edge technology into its Freebox gateways, from built-in media servers to high-end Wi-Fi.

Wi-Fi 6 Penetration Continues to Rise Slowly in Spain
Speedtest Intelligence® | January 2025

This sparked a ‘box war’ in France, where rival ISPs faced competitive pressure to regularly update their CPE to avoid being outpaced. For example, when Free introduced a Wi-Fi 6-capable Freebox for new subscribers, Orange (Livebox 6) and Bouygues (Bbox Wi-Fi 6) quickly followed suit with their own offerings, treating hardware as a key competitive feature to attract subscribers.

Additionally, French ISPs typically included these newer CPE solutions at no extra cost in standard fiber tariffs. When Orange launched the Livebox 6 in 2022 with Wi-Fi 6E support—leveraging additional spectrum in the 6 GHz band to boost theoretical maximum speeds to 9.6 Gbps—it made the device available to all new fiber customers on eligible tariffs. Free took a similar approach earlier with its mid-range Freebox Pop, adding Wi-Fi 6 support in 2021 for new sign-ups without increasing the base subscription fee.

The absence of a Free-equivalent disruptor in Spain until the later arrival of DIGI, combined with a longstanding focus on bundling and content rather than CPE hardware and multi-gigabit tariffs for competitive differentiation, has likely been a key factor in dampening the adoption of Wi-Fi 6 and 7 in Spain.

DIGI's Emphasis on Modern CPE Drives Leadership in Wi-Fi 6 Penetration
Speedtest Intelligence® | January 2025

  • Telefónica’s Movistar: Movistar introduced its first Wi-Fi 6 CPE (Smart Wi-Fi 6) in mid-2022. The ISP initially sought to monetize the device, charging a one-time installation fee for existing customers while bundling it with a new high-speed multi-gigabit tariff. By January, Wi-Fi 6 accounted for as much as 19% of Movistar’s customer base, based on Speedtest sample share.

    The ISP leveraged its presence at MWC 2025 in Barcelona to unveil plans for a Wi-Fi 7 CPE solution, designed to harness the higher-speed multi-gigabit tariffs enabled by its XGS-PON upgrades and expansion. As it phases out legacy hardware, the ISP is accelerating the migration of subscribers from Wi-Fi 4 and 5 CPE, with Speedtest Intelligence data revealing a progressive decline in Wi-Fi 4 penetration since August last year in Movistar’s base.

    At the start of this year, it announced that all new Movistar fixed subscribers, regardless of tariff tier, would receive its Smart Wi-Fi 6 solution as standard, replacing the previous ‘HGU’ Wi-Fi 5-based offering and replicating the strategy of DIGI.

Movistar is Making Progress in Driving Down Wi-Fi 4 Usage
Speedtest Intelligence® | January 2025

  • Orange: Orange was among the first major ISPs in Spain to introduce Wi-Fi 6 CPE, bringing its Livebox 6 and later Livebox 7 solutions from France to the Spanish market starting in 2021, later extending them to sub-brands like Jazztel. The ISP provided this CPE free of charge to new customers across all tariffs, regardless of speed tier. Like Movistar, it initially charged existing subscribers a (monthly, in this case) fee to upgrade to the new hardware. This relatively early and widespread deployment has given Orange a lead in Wi-Fi 6 adoption over Movistar, with as much as 35% of connections on the ISP using the standard by January, based on Speedtest sample share.

    The ISP has since introduced the ‘Livebox Wi-Fi 7’ CPE solution, bundled with a new suite of 10 Gbps converged fiber tariffs. Leveraging Orange’s XGS-PON footprint, it offers among the highest advertised provisioned speeds in the Spanish market.
  • Vodafone: Vodafone introduced its ‘Wi-Fi 6 Station’ in Spain around mid-2021, making it one of the earliest Wi-Fi 6 solutions in the market. However, the ISP positioned it as a premium add-on rather than a standard feature. While new customers could access the Wi-Fi 6 Station, it was initially bundled with Vodafone’s ‘Super Wi-Fi 6’ service, which required a monthly rental fee unless they were on the top Gigabit plan.

    As a result, customers who did not opt in and pay extra continued to receive the older Wi-Fi 5-based CPE by default (similar to many other ISPs). This approach, combined with the legacy composition of Vodafone’s HFC (hybrid fiber-coaxial) base,  has left the ISP’s Wi-Fi 6 adoption lagging behind competitors, with fewer than 14% of its connections using the standard by January based on Speedtest sample share. 

DIGI is the only Spanish ISP where Wi-Fi 6 penetration surpasses Wi-Fi 5
Speedtest Intelligence® | January 2025

  • DIGI: Unlike other ISPs managing a diverse base of legacy customers across various access technologies and CPE generations, DIGI’s relatively recent entry into the Spanish market has given it a significant competitive advantage, allowing it to build a subscriber base largely equipped with newer Wi-Fi CPE. 

    In early 2022, the ISP introduced a Wi-Fi 6 CPE solution for all its fiber subscribers at no additional cost, ensuring that even customers on DIGI’s basic tariffs received the latest Wi-Fi hardware. This approach has driven rapid Wi-Fi 6 adoption, with penetration surpassing 46% by January. DIGI remains the only Spanish ISP where Wi-Fi 6 represents a larger share of its connection base than Wi-Fi 5, contributing to its lead in fixed download speed performance in the market.

    Building on this, last year, DIGI became the first Spanish ISP to launch a Wi-Fi 7 CPE solution in partnership with ZTE, initially bundling the hardware with its premium ‘Pro-DIGI’ tariffs, which leverage XGS-PON to offer advertised symmetrical speeds of up to 10 Gbps. However, adoption remains limited, with Wi-Fi 7 accounting for less than 1% of Speedtest samples on DIGI in January.

Newer Wi-Fi standards enhance performance across all metrics and Spanish ISPs

Despite the wide variation in Wi-Fi standard adoption among Spanish ISPs, the common feature is that newer CPE models drive significant performance improvements across all metrics. Most notably, Wi-Fi 6 and 7 are playing a key role in narrowing the performance gap between advertised fiber speeds—typically achievable via wired Ethernet—and real-world wireless performance in Spanish homes.

Wi-Fi 6 and Wi-Fi 7 Drive Substantial Performance Gains Across All ISPs and Metrics
Speedtest Intelligence® | January 2025

At the end of 2024, median download speeds on Wi-Fi 7 in Spain reached 664.25 Mbps, surpassing Wi-Fi 6 by 58% and more than doubling speeds on Wi-Fi 5. Median upload speeds on Wi-Fi 7, enhanced by features like Multi-Link Operation (MLO), which enables simultaneous transmissions across multiple spectrum bands, reached 449.69 Mbps—28% higher than Wi-Fi 6 and 51% above Wi-Fi 5. Wi-Fi 7 also delivered marked latency improvements, with a median latency of 19 ms, up to 12% lower than Wi-Fi 6.

Wi-Fi 7 is Key to Unlocking the Full Potential of Multi-Gigabit Fiber Tariffs
Speedtest Intelligence® | January 2025

The proliferation of multi-gigabit tariffs with XGS-PON, which has progressed more slowly in Spain than in other fiber-rich markets like France but is now accelerating thanks to moves by ISPs like DIGI and Orange, underlines the need for CPE capable of fully utilizing provisioned speeds and spreading gigabit performance throughout the home. Speedtest Intelligence data reveals that early Wi-Fi 7 CPE deployments are the first to achieve median download speeds exceeding 1 Gbps at the 90th percentile in Spain, showcasing how Wi-Fi 7’s technical advances like wider channel bandwidth and higher modulation are emerging as key differentiators for the technology in the premium segment.

Newer Wi-Fi Generations Drive Latency Improvements
Speedtest Intelligence® | January 2025

Driving adoption of newer Wi-Fi standards requires fresh strategies but create new revenue opportunities for ISPs

As advanced fiber markets like Spain mature, the focus is shifting from simply delivering gigabit speeds to the doorstep to ensuring seamless whole-home performance that meets the diverse demands of emerging connected devices. As a result, investments in enhancing the Wi-Fi experience through ISP-supplied CPE will be key to differentiating multi-gigabit tariffs beyond price and ensuring the full potential of fiber connections can be realised.

Spain must accelerate the modernization of its Wi-Fi base to fully capitalize on substantial investments in XGS-PON, deliver meaningful improvements in quality of experience (QoE) for consumers, and catch up with leading markets in the Nordics. Spanish ISPs can take cues from neighboring countries like France, where CPE upgrades are bundled with tariff speed upgrades, and targeted swap-and-replace programs systematically identify and phase out legacy Wi-Fi hardware to drive adoption of next-generation Wi-Fi 6 and 7 equipment. Recent moves by ISPs like Telefónica’s Movistar to sunset legacy CPE and provide Wi-Fi 6 solutions as standard are evidence of progress in this respect.

Leading European ISPs that have prioritized consumer awareness of Wi-Fi standards and their impact on fiber performance—while modernizing their Wi-Fi CPE base to support monetizable offerings like minimum speed guarantees in every room—are seeing tangible benefits. This strategy not only enhances the overall fixed broadband experience but also unlocks new revenue streams through service differentiation.


Rica en fibra y pobre en Wi-Fi: España ejemplifica la ‘enfermedad’ del Wi-Fi obsoleto

España lidera Europa en despliegue de fibra, pero está pagando el precio de descuidar la modernización de equipos Wi-Fi, lo que socava su competitividad global en rendimiento de banda ancha fija.

La notable transformación de España, que hace una década pasó de ser un país rezagado en telecomunicaciones a convertirse en líder mundial en disponibilidad de fibra, ha sido vertiginosa tanto en escala como en velocidad. Aclamada ampliamente como modelo de buenas prácticas, esta transformación ha desempeñado un papel clave para que el país se sitúe a la vanguardia de Europa en crecimiento económico durante los dos últimos años, apoyando la atracción de inversión en fabricación de precisión, energías renovables y una creciente comunidad de nómadas digitales.

Si el despliegue de fibra en el mayor número posible de hogares fuera una carrera de velocidad, España habría ganado sin duda alguna. Pero la verdadera carrera -la maratón de extender la cobertura gigabit a todo el hogar, más allá de la puerta- requiere modernizar los equipos Wi-Fi de las instalaciones del cliente (CPE). En este aspecto, España se está quedando rezagada, lo que merma su competitividad global en rendimiento de banda ancha fija y limita la capacidad de los proveedores de servicios de internet (ISP) españoles para diferenciarse en un mercado saturado con múltiples despliegues de fibra que se solapan. 

Este abismo entre las conexiones de fibra de alta capacidad que llegan a la mayoría de los hogares españoles y los anticuados equipos Wi-Fi que suministran esa conectividad a los dispositivos finales ejemplifica la paradoja de los “antiguos” mercados de fibra como España. Como pionera en fibra, España migró desde el cobre antes de que los modernos CPE Wi-Fi 6 y Wi-Fi 7 -diseñados para aprovechar al máximo el potencial multi-gigabit de la fibra- estuvieran ampliamente disponibles.

Aspectos Clave:

  • España cuenta con una de las huellas Wi-Fi más antiguas y menos capaces de Europa. A finales de 2024, dos tercios de todas las conexiones Wi-Fi en España todavía dependían de estándares heredados (Wi-Fi 4 y Wi-Fi 5), dejando al país notablemente por detrás de sus iguales con menor penetración de fibra, incluyendo la vecina Francia, el Reino Unido y todos los países nórdicos. Este profundo arraigo de los estándares Wi-Fi heredados está limitando artificialmente el rendimiento de las conexiones de fibra de España, contribuyendo a su bajo rendimiento en el Speedtest Global Index™ en comparación con países con un despliegue de fibra menos extenso.
  • Las capacidades de la huella Wi-Fi de España varían significativamente entre los distintos ISP. DIGI se ha distinguido por ofrecer CPE modernos con Wi-Fi 6 como estándar a toda su base de abonados, beneficiándose de su posición como nuevo operador sin una base de clientes heredada. Esto ha impulsado su fuerte liderazgo en la penetración de Wi-Fi 6 en España -casi la mitad de todas las muestras de Speedtest en conexiones de DIGI en enero utilizaban Wi-Fi 6 o 7, frente a menos de una cuarta parte en Movistar y Vodafone-, mejorando su rendimiento global de banda ancha fija. En comparación, los ISP que tardaron en introducir CPE modernos, como Movistar, o que restringieron el acceso a los abonados que optaron por complementos de alquiler de equipos premium, como Vodafone, conservan una cuota mucho mayor de usuarios con estándares Wi-Fi heredados.
  • Los CPE modernos con Wi-Fi 6 y 7 ofrecen importantes mejoras de rendimiento en todos los proveedores. La diferencia entre las velocidades de fibra anunciadas hasta la puerta de casa (normalmente alcanzables a través de Ethernet por cable) y el rendimiento Wi-Fi real es menor en los hogares en los que se han desplegado CPE Wi-Fi 6 y 7. A finales de 2024, las velocidades medianas de descarga en Wi-Fi 6 en España alcanzaron los 419,13 Mbps, superando las velocidades de Wi-Fi 5 en más de un 54% y el rendimiento de Wi-Fi 4 en un orden de magnitud. Mientras tanto, la latencia mediana de las conexiones Wi-Fi 7 (19 ms) mejoró notablemente en comparación con los resultados de los estándares Wi-Fi anteriores.

España, víctima de su propio éxito: desplegó fibra por todas partes antes de la llegada de Wi-Fi 6 y 7

España es un ejemplo típico de los retos que plantea el Wi-Fi heredado a los que fueron los primeros en adoptar la fibra óptica en Europa, países que se lanzaron a desplegar redes de fibra completa con tecnología GPON (Gigabit Passive Optical Network, red óptica pasiva Gigabit). En este sentido, Telefónica inició el despliegue de fibra a gran escala a principios de la década de 2010 y lo aceleró a partir de 2015. A finales de la década, España se había adelantado a la mayoría de los países en cobertura de fibra y en la migración desde la DSL basada en cobre, con una inversión que impulsó múltiples despliegues de fibra superpuestos en muchas zonas. 

A menudo se subestima la magnitud del éxito de España en el despliegue de fibra. El último índice DESI de la Comisión Europea indica que más del 95% de los hogares españoles contaban con una red de fibra óptica, lo que sitúa al país muy por encima de la media de la UE (64%). Esto ha colocado a España a una distancia asombrosa del objetivo de la Comisión para la Década Digital 2030 de lograr una cobertura total de fibra en todos los Estados miembros al final de la década.

España sigue liderando Europa en despliegue de fibra
Comisión Europea | DESI 2018-2024

Los despliegues iniciales de fibra en España a principios de 2010 coincidieron con el hecho de que el Wi-Fi 4 era el estándar de facto para muchos CPE suministrados por los operadores. De acuerdo con una norma de 2009, el Wi-Fi 4 ofrece velocidades máximas teóricas de descarga de hasta 600 Mbps. En el punto álgido del despliegue de fibra en la segunda mitad de la década, el Wi-Fi 5 se había convertido en el estándar de vanguardia, ofreciendo velocidades máximas de 3,5 Gbps y convirtiéndose gradualmente en dominante. Por ejemplo, en 2016, el CPE de fibra de Movistar contaba con un modelo Wi-Fi 5 de doble banda, considerado de gama alta en aquel momento.

Para cuando el Wi-Fi 6 (el primer estándar realmente diseñado para fibra multi-gigabit basado en XGS-PON -la última tecnología de redes ópticas que permite velocidades simétricas de hasta 10 Gbps-) estuvo disponible, los ISP españoles ya habían desplegado decenas de millones de CPE heredados. El análisis de los datos de Speedtest Intelligence revela que los CPE Wi-Fi 4 y Wi-Fi 5 han permanecido profundamente arraigados a la base de fibra de España, representando colectivamente más del 75% de todas las conexiones fijas en diciembre de 2024, según la cuota de muestras de Speedtest. 

La dinámica competitiva desempeña un papel clave en la configuración de los resultados de Wi-Fi de los distintos países e ISP

La gran cantidad de CPE Wi-Fi heredados en España contrasta fuertemente con otros países ricos en fibra, como la vecina Francia, otro líder europeo en despliegue de fibra a pesar de que ha ido a la zaga de España hasta hace pocos años. En diciembre de 2024, el Wi-Fi 6 representaba casi un tercio de todas las conexiones Wi-Fi en Francia, frente a menos de una cuarta parte en España.

Más allá del calendario de despliegue de fibra más tardío de Francia en comparación con el de España, es probable que la dinámica competitiva y el comportamiento de los consumidores hayan influido en las diferencias de adopción del Wi-Fi entre ambos países. Aunque el mercado fijo español es muy competitivo, ha estado liderado por unos pocos grandes operadores convergentes que tradicionalmente han dado prioridad al precio de los paquetes y a los contenidos frente a la inversión en CPE de vanguardia.

En su mayor parte, los ISP españoles han competido tradicionalmente en precio, contenido y niveles de velocidad, sin que las mejoras del CPE Wi-Fi se considerasen un diferenciador clave. En Francia, por el contrario, la entrada en el mercado de Free, de Iliad, a principios de la década pasada, intensificó la competencia no sólo en precios, sino también en innovación en la “caja de Internet”. Durante más de una década, Free marcó el ritmo del mercado integrando tecnología punta en sus pasarelas Freebox, desde servidores multimedia incorporados hasta Wi-Fi de alta gama.

La penetración del Wi-Fi 6 sigue creciendo lentamente en España
Speedtest Intelligence® | Enero 2025

Esto desencadenó una “guerra de cajas” en Francia, donde los operadores rivales se enfrentaron a la presión competitiva de actualizar periódicamente sus CPE para evitar ser superados. Por ejemplo, cuando Free introdujo un Freebox Wi-Fi 6 para nuevos abonados, Orange (Livebox 6) y Bouygues (Bbox Wi-Fi 6) no tardaron en lanzar sus propias ofertas, considerando el hardware como una característica competitiva clave para atraer abonados. 

Además, los ISP franceses solían incluir estas nuevas soluciones CPE sin coste adicional en las tarifas de fibra estándar. Cuando Orange lanzó el Livebox 6 en 2022 con soporte Wi-Fi 6E -aprovechando el espectro adicional en la banda de 6 GHz para aumentar las velocidades máximas teóricas a 9,6 Gbps- puso el dispositivo a disposición de todos los nuevos clientes de fibra con tarifas elegibles. Free ya había adoptado un enfoque similar con su Freebox Pop de gama media, añadiendo la compatibilidad con Wi-Fi 6 en 2021 para los nuevos suscriptores sin aumentar la cuota de suscripción básica.

La ausencia de un disruptor equivalente a Free en España hasta la posterior llegada de DIGI, combinada con un enfoque centrado desde hace tiempo en la paquetización y los contenidos más que en el hardware (CPE) y en las tarifas multi-gigabit para la diferenciación competitiva, ha sido probablemente un factor clave para frenar la adopción de Wi-Fi 6 y 7 en España.

Foco de DIGI en CPE modernos promueve liderazgo en la adopción de Wi-Fi 6
Speedtest Intelligence® | Enero 2025

  • Telefónica: Movistar introdujo su primer CPE Wi-Fi 6 (Smart Wi-Fi 6) a mediados de 2022. Inicialmente, el operador trató de rentabilizar el dispositivo cobrando una cuota única de instalación a los clientes y combinándolo con una nueva tarifa multi-gigabit de alta velocidad. En enero, el Wi-Fi 6 representaba hasta el 19% de la base de clientes de Movistar, según la cuota de muestreo de Speedtest. 

    El operador aprovechó su presencia en el MWC 2025 de Barcelona para desvelar sus planes para una solución CPE Wi-Fi 7, diseñada para aprovechar las tarifas multi-gigabit de mayor velocidad habilitadas por sus actualizaciones y ampliaciones XGS-PON. A medida que va eliminando hardware heredado, el operador está acelerando la migración de abonados desde CPE Wi-Fi 4 y 5. A este respecto, los datos de Speedtest Intelligence revelan un descenso progresivo de la penetración de Wi-Fi 4 desde agosto del año pasado en la base de Movistar. 

    A principios de este año, Movistar anunció que todos sus nuevos abonados de telefonía fija, independientemente del nivel de tarifa, recibirán su solución CPE ‘Smart Wi-Fi 6’, para sustituir la anterior oferta basada en Wi-Fi 5 ‘HGU’, replicando, así, la estrategia de DIGI.

Movistar avanza en la reducción del uso de Wi-Fi 4
Speedtest Intelligence® | Enero 2025

  • Orange: Orange fue uno de los primeros grandes operadores en España en introducir un CPE Wi-Fi 6, al traer sus soluciones Livebox 6 y más tarde Livebox 7 de Francia al mercado español a partir de 2021, y extenderlas más tarde a submarcas como Jazztel. El ISP proporcionó este CPE de forma gratuita a los nuevos clientes en todas las tarifas, independientemente del nivel de velocidad. Al igual que Movistar, cobró inicialmente a los abonados existentes una cuota (mensual, en este caso) para actualizar al nuevo hardware. Este despliegue relativamente temprano y generalizado ha dado a Orange una ventaja en la adopción de Wi-Fi 6 sobre Movistar, con hasta un 35% de sus conexiones utilizando el estándar en enero, según la cuota de muestra de Speedtest.

    Desde entonces, el operador ha introducido la solución CPE ‘Livebox Wi-Fi 7’, incluida en un nuevo paquete de tarifas de fibra convergente de 10 Gbps. Aprovechando la huella XGS-PON de Orange, ofrece las velocidades más altas anunciadas en el mercado español.
  • Vodafone: Vodafone introdujo su ‘Wi-Fi 6 Station’ en España a mediados de 2021, lo que la convierte en una de las primeras soluciones Wi-Fi 6 del mercado. Sin embargo, el proveedor la posicionó como un complemento premium más que como una característica estándar. Aunque los nuevos clientes podían acceder al router Wi-Fi 6, en un principio estaba vinculado al servicio ‘Súper Wi-Fi 6’, que exigía una cuota mensual de alquiler a menos que estuvieran en el plan gigabit superior. 

    En consecuencia, los clientes que no optaban por este servicio ni pagaban una cuota adicional seguían recibiendo por defecto el antiguo CPE basado en Wi-Fi 5 (al igual que en el caso de muchos otros operadores). Este enfoque, combinado con la composición heredada de la base HFC (fibra híbrida coaxial) de Vodafone, ha dejado la adopción de Wi-Fi 6 por parte del operador por detrás de sus competidores, con menos del 14% de sus conexiones utilizando este estándar en enero según la cuota de muestreo de Speedtest. 

DIGI es el único ISP español en el que la penetración de Wi-Fi 6 supera la de Wi-Fi 5
Speedtest Intelligence® | Enero 2025

  • DIGI: A diferencia de otros ISP que gestionan una base diversa de clientes heredados a través de diversas tecnologías de acceso y generaciones de CPE, la entrada relativamente reciente de DIGI en el mercado español le ha dado una ventaja competitiva significativa, lo que le ha permitido construir una base de suscriptores en gran parte equipada con CPE Wi-Fi más nuevos. 

    A principios de 2022, el operador introdujo una solución Wi-Fi 6 CPE para todos sus abonados de fibra sin coste adicional, garantizando que incluso los clientes de las tarifas básicas de DIGI recibieran el hardware Wi-Fi más reciente. Este enfoque ha impulsado la rápida adopción del Wi-Fi 6, con una penetración superior al 46% en enero. DIGI sigue siendo el único proveedor español en el que el Wi-Fi 6 representa una cuota mayor de su base de conexiones que Wi-Fi 5, lo que contribuye a su liderazgo en rendimiento de velocidad de descarga fija en el mercado

    Sobre esta base, el año pasado DIGI se convirtió en el primer operador español en lanzar una solución CPE Wi-Fi 7 en colaboración con ZTE, e incluyó inicialmente el hardware con sus tarifas premium ‘Pro-DIGI’, que aprovechan XGS-PON para ofrecer velocidades simétricas anunciadas de hasta 10 Gbps. Sin embargo, la adopción sigue siendo limitada, y el Wi-Fi 7 representó menos del 1% de las muestras de Speedtest en DIGI en enero.

Los nuevos estándares Wi-Fi mejoran el rendimiento en todas las métricas e ISP españoles

A pesar de la amplia variación en la adopción de estándares Wi-Fi entre los ISP españoles, un resultado común es que los nuevos modelos de CPE impulsan mejoras en el rendimiento significativas en todas las métricas. En particular, Wi-Fi 6 y Wi-Fi 7 desempeñan un papel clave en la reducción de la diferencia entre las velocidades de fibra anunciadas -que normalmente se consiguen a través de Ethernet por cable- y el rendimiento inalámbrico real en los hogares españoles.

Wi-Fi 6 y Wi-Fi 7 impulsan mejoras sustanciales en todos los ISP y métricas
Speedtest Intelligence® | Enero 2025

A finales de 2024, las velocidades medianas de descarga en Wi-Fi 7 en España alcanzaron los 664,25 Mbps, superando las de Wi-Fi 6 en un 58% y duplicando con creces las velocidades de Wi-Fi 5. Por su parte, las velocidades medianas de carga en Wi-Fi 7, mejoradas por características como la Operación Multienlace (MLO), que permite transmisiones simultáneas a través de múltiples bandas de espectro, alcanzaron los 449,69 Mbps, un 28% más que en Wi-Fi 6 y un 51% por encima de Wi-Fi 5. El Wi-Fi 7 también ofreció notables mejoras de latencia, con una latencia mediana de 19 ms, hasta un 12% inferior a la de Wi-Fi 6.

Wi-Fi 7 es clave para aprovechar el potencial de las tarifas de fibra multi gigabit
Speedtest Intelligence® | Enero 2025

La proliferación de tarifas multi-gigabit con XGS-PON, que ha progresado más lentamente en España que en otros mercados ricos en fibra, como Francia, pero que ahora se está acelerando gracias a los movimientos de operadores como DIGI y Orange, subraya la necesidad de CPE capaces de utilizar plenamente las velocidades provisionadas y extender el rendimiento gigabit por todo el hogar. Los datos de Speedtest Intelligence revelan que los primeros despliegues de CPE Wi-Fi 7 son los primeros en alcanzar velocidades medias de descarga superiores a 1 Gbps en el percentil 90 en España, lo que demuestra cómo los avances técnicos de Wi-Fi 7, como un mayor ancho de banda de canal y una modulación más alta, se están convirtiendo en diferenciadores clave de la tecnología en el segmento premium.

Las nuevas generaciones de Wi-Fi promueven mejoras en la latencia
Speedtest Intelligence® | Enero 2025

Impulsar la adopción de los nuevos estándares Wi-Fi requiere nuevas estrategias, pero crea nuevas oportunidades de ingresos para los ISP

A medida que los mercados avanzados de fibra (como el español) maduran, la atención pasa de centrarse simplemente en ofrecer velocidades gigabit hasta la puerta de casa a garantizar un rendimiento sin fisuras en todo el hogar, que satisfaga las diversas demandas de los dispositivos conectados emergentes. Como resultado, las inversiones para mejorar la experiencia Wi-Fi a través del CPE suministrado por el ISP serán clave para diferenciar las tarifas multi-gigabit más allá del precio y garantizar que se pueda aprovechar todo el potencial de las conexiones de fibra. 

España debe acelerar la modernización de su base Wi-Fi para capitalizar plenamente las importantes inversiones en XGS-PON, ofrecer mejoras significativas en la calidad de la experiencia (QoE) para los consumidores y alcanzar a los mercados líderes de los países nórdicos. Los operadores españoles pueden seguir el ejemplo de países vecinos como Francia, donde las actualizaciones de CPE se incluyen en las actualizaciones de velocidad de las tarifas, y los programas de intercambio y sustitución identifican y eliminan sistemáticamente el hardware Wi-Fi heredado para impulsar la adopción de equipos Wi-Fi 6 y 7 de nueva generación. Los recientes movimientos de ISP como Movistar para eliminar el CPE heredado y ofrecer soluciones Wi-Fi 6 de serie son una prueba de los avances en este sentido.

Los principales ISP europeos que han dado prioridad a la concienciación de los consumidores sobre los estándares Wi-Fi y su impacto en el rendimiento de la fibra, al tiempo que han modernizado su base de CPE Wi-Fi para dar soporte a ofertas rentables como las garantías de velocidad mínima en cada habitación, están viendo beneficios tangibles. Esta estrategia no sólo mejora la experiencia general de la banda ancha fija, sino que también desbloquea nuevas fuentes de ingresos a través de la diferenciación del servicio.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| February 26, 2025

Wi-Fi 7 in Europe: France Leads in Differentiating Multi-Gigabit Fiber Experiences

Intense fiber overbuilding in advanced European markets has made investments in timely Wi-Fi upgrades a critical lever for enhancing and differentiating multi-gigabit experiences

European markets are at the forefront of the global transition to full-fiber networks in the last mile, with multi-gigabit home broadband connections becoming increasingly common in the most advanced Western and Northern European markets. A groundswell of fiber investment has driven extensive network overbuilding at many residential addresses, expanding consumer choice but making it difficult for ISPs to differentiate beyond price.

The critical role of home Wi-Fi solutions in enhancing broadband experiences has come into sharper focus in recent years, with leading European ISPs adopting mesh solutions and offering more advanced customer premise equipment (CPE) to improve performance and unlock new revenue streams through innovative bundling and minimum Wi-Fi speed guarantees. The challenge now lies in spreading gigabit-level performance throughout the entire home, beyond the line connection point, to meet the growing demands of an increasing number of connected devices.

The arrival of Wi-Fi 7 presents a unique opportunity for leading ISPs to address this challenge head-on, offering a new avenue for fiber differentiation and a stronger focus on quality of experience (QoE). With advancements in speed, latency, and efficiency, Wi-Fi 7 is becoming an important tool for ISPs looking to compete more effectively in the premium segment of the fixed market, enabling best-in-class experiences on multi-gigabit connections.

Key Takeaways:

  • Central and Western European countries lead in Wi-Fi 7 adoption, while the Nordics boast the most advanced overall Wi-Fi mix: At the end of 2024, France (1.5% Speedtest sample share1), Switzerland (0.9%), and Denmark (0.6%)—among the world’s leading fixed broadband markets in fiber penetration and consistently ranked in the Speedtest Global Index™ top ten for median download speed—had the highest adoption of Wi-Fi 7 connections. When considering overall adoption of modern Wi-Fi standards (Wi-Fi 6 and Wi-Fi 7 combined), Nordic countries such as Iceland (46%), Norway (39%), and Sweden (38%) led in Europe, with over a third of all connections in each of these countries using these modern Wi-Fi standards.
  • Wi-Fi 7 drives substantial improvements in performance across all metrics: Among the ten countries with the highest Wi-Fi 7 penetration at the end of 2024, the average country-wide median download speeds on Wi-Fi 7 (565.80 Mbps) were up to 78% higher than those on Wi-Fi 6. Upload speeds—boosted by technical advancements like Multi-Link Operation (MLO), which enables simultaneous transmissions across multiple spectrum bands—were nearly twice as fast as those on Wi-Fi 6. Latency improvements, meanwhile, have been more modest, with median latency (13 ms) across the country sample just over 11% lower than on Wi-Fi 6.
  • Legacy Wi-Fi standards continue to dominate in Europe, weighing on fiber experiences: By the end of 2024, legacy Wi-Fi standards (Wi-Fi 4 and Wi-Fi 5) still accounted for over 70% of connections in many European countries. Western European markets with very high fiber penetration, such as Spain (75% legacy Wi-Fi share), Portugal (78%), and Ireland (84%), lagged, hindering their competitiveness in fixed network performance.

Legacy Wi-Fi standards have become a bottleneck in fiber-rich countries, limiting the potential of multi-gigabit connections

ISP investments in advanced CPE, particularly those supporting the latest Wi-Fi standards and mesh solutions, are critical for maximizing the throughput, coverage, and overall reliability benefits of fiber broadband—especially to optimize the experience in bread-and-butter applications like video streaming, gaming, and web browsing.

Failing to migrate fixed subscribers to modern CPE (e.g., Wi-Fi 6 and Wi-Fi 7) is strongly associated with poorer performance outcomes, especially at the upper end (e.g., 90th percentile). This undermines the benefits of full-fiber connections, especially when higher-speed tiers—often offered at a premium price—are not matched with sufficiently capable CPE.

The Profile of Wi-Fi Standard Adoption Varies Widely Across Europe
Speedtest Intelligence® | December 2024

The rollout of full-fiber networks in Europe—particularly investments in infrastructure supporting symmetrical 10 Gbps speeds with XGS-PON (the latest standard in passive optical networking)—is driving the proliferation of multi-gigabit residential connections. As a result, the bottleneck has shifted from the last-mile access line to in-home Wi-Fi networks, which now face challenges from larger property sizes, modern insulation materials that hinder signal propagation, and the rapid growth in both the number and diversity of connected devices.

Majority of Fixed Broadband Subscriptions in France Are Now Multi-Gigabit Capable
European Commission | DESI 2024

Multi-gigabit fiber connections accounted for nearly 20% of all fixed broadband subscriptions on average across the EU, according to the latest Digital Economy and Society Index (DESI) published by the European Commission in 2024. France (52%), Hungary (37%), and Romania (30.45%) led the bloc, each featuring well over a quarter of all fixed subscriptions provisioned with download speeds of at least 1 Gbps.

For these multi-gigabit subscribers—who typically represent the high-value premium segment of the fixed market and typically expect the best experience—legacy Wi-Fi standards can significantly constrain performance. Wi-Fi 4, for example, which still accounted for over 20% of active connections in the UK and France at the end of 2024 (based on Speedtest sample share), offers a maximum theoretical throughput of 600 Mbps, while Wi-Fi 5 (which made up more than half of all Wi-Fi connections in the UK) raises this to 3.5 Gbps. However, both fall well short of the increasingly common provisioned fiber speeds of 5 Gbps and 10 Gbps seen in advanced European markets such as France.

Fiber-Rich Countries like Ireland, Spain, and Portugal Still Have a Large Legacy Wi-Fi Base
Speedtest Intelligence® | December 2024

Analysis of Speedtest Intelligence® data reveals a general trend in Europe: markets with higher full-fiber penetration and a greater share of multi-gigabit subscriptions tend to have a lower proportion of legacy Wi-Fi standards in use, reflecting ISP success in migrating customers to modern CPE. However, several notable markets stand out as exceptions to this trend, highlighting the need for new strategies to increase the adoption of more capable Wi-Fi standards.

Spain, Portugal, and Ireland, for example, rank among the highest in Europe for full-fiber coverage but have a disproportionately outdated Wi-Fi mix, with up to 84% of fixed connections still reliant on Wi-Fi 4 or Wi-Fi 5 in these countries at the end of 2024. The persistence of legacy Wi-Fi standards, combined with lower multi-gigabit adoption—partly due to ISPs limiting access to higher provisioned speed tiers—may help explain why these countries underperform in the Speedtest Global Index compared to France and Denmark, despite exhibiting wider overall full-fiber coverage. This is a notable example of legacy Wi-Fi standards acting as a bottleneck on fixed performance in fiber-rich countries. 

Early deployments of Wi-Fi 7 demonstrate significant performance gains, showcasing the full potential of fiber

Wi-Fi 6, introduced five years ago, marked a major advancement in home networking, delivering the first Wi-Fi standard designed to fully harness the multi-gigabit capability of full-fiber connections. The later introduction of Wi-Fi 6E, with support for the 6 GHz band, unlocked significant additional capacity in less congested spectrum, enhancing ISPs’ ability to improve home Wi-Fi performance at the high end. Beyond delivering better performance, it also enabled ISPs to monetize ‘Wi-Fi guarantees’ for the first time through the provision of high-performance mesh systems and minimum multi-room speed commitments.

Despite early supply chain disruptions from the pandemic affecting the availability of Wi-Fi 6-capable CPE, the technology has been widely deployed across advanced markets in Europe, yielding significant improvements in real-world fixed broadband performance. By the end of 2024, for instance, median download speeds on Wi-Fi 6 in the top three European markets with the highest adoption—based on Speedtest sample share—were at least 50% faster than those on Wi-Fi 5, demonstrating a marked performance uplift. These high-penetration markets, primarily in the Nordics, included Iceland (Wi-Fi 6 accounting for 45% of all connections), Switzerland (42%), and Norway (38%).

The introduction of Wi-Fi 7, driven in Europe by large-scale launches from Iliad’s Free in France and BT’s EE last year, marks the next step in ISPs’ efforts to maximize the performance of multi-gigabit full-fiber connections and spread it throughout the home with advanced mesh systems. While Wi-Fi 6/6E CPE will continue to serve the vast majority of full-fiber connections effectively, Wi-Fi 7’s future-proof scalability and its notable latency improvements—beyond just headline provisioned speeds—will become key differentiators over time for better QoE outcomes. 

Central and Western European Countries lead Europe in Wi-Fi 7 Adoption
Speedtest Intelligence® | December 2024

Wi-Fi 7-capable CPE significantly expand the theoretical performance ceiling of home Wi-Fi, supporting more connected devices and nearly quintupling potential downlink speeds. These enhancements are enabled by key features such as doubling the bandwidth in the 6 GHz band, allowing devices to operate across multiple bands simultaneously with Multi-Link Operation (MLO), and improving scheduling to minimize congestion and interference.

The real-world performance gains from Wi-Fi 7, coupled with the higher provisioned tariff speeds typically offered with Wi-Fi 7-capable CPE (such as Free’s 8 Gbps symmetrical offering in France), are evident in Speedtest Intelligence data. At the end of 2024, Free’s subscribers in France—where Wi-Fi 7 made up over 4% of the ISP’s Wi-Fi connections, among the highest share in Europe—recorded median download speeds of over 1.1 Gbps on Wi-Fi 7, nearly double the performance levels observed on Wi-Fi 6.

Wi-Fi 7 Drives Substantial Download Speed Uplift on Multi-Gigabit Connections
Speedtest Intelligence® | December 2024

Similar improvements in download speed performance on Wi-Fi 7 have been observed in the UK, where EE has bundled Wi-Fi 7 CPE with tariffs offering full-fiber speeds of up to 1.6 Gbps and introduced a money-back guarantee to ensure at least 100 Mbps in ‘every corner’ of the home. Speedtest Intelligence data shows that median download speeds on Wi-Fi 7 with EE’s fixed broadband reached 665.01 Mbps at the end of 2024—more than four times the performance recorded on EE-based Wi-Fi 6 connections during the same period.

Wi-Fi 7 is a Key Enabler of ISP Ambitions for Symmetrical Uplink and Downlink Performance
Speedtest Intelligence® | December 2024

In terms of upload speed performance—critical for applications like live streaming and video conferencing—Wi-Fi 7 has been positioned as a mechanism to strengthen ISPs’ ability to deliver symmetrical multi-gigabit speeds across both the downlink and uplink. At the end of 2024, median upload speeds on Wi-Fi 7 were up to 80% faster on Free and nearly twice as fast on EE compared to Wi-Fi 6 connections.

Wi-Fi 7's Latency Improvements Surpass Those of Recent Generations
Speedtest Intelligence® | December 2024

Latency, unlike download and upload speeds, is not directly influenced by the impact of ISPs bundling Wi-Fi 7-capable CPE with higher-tier tariff speeds. However, notable improvements are still evident in this metric on Wi-Fi 7, driven by Multi-Link Operation (MLO). Median latency on EE’s Wi-Fi 7 connections in the UK reached 17 ms at the end of 2024, a 12% improvement over Wi-Fi 6, while Free in France recorded a median latency of 18 ms, reflecting a 7% reduction.

While these latency improvements may seem modest, they can translate into significantly enhancing QoE in interactive, time-sensitive applications such as gaming and videoconferencing, delivering a substantial upgrade over legacy Wi-Fi standards.

Premium Wi-Fi experiences present new opportunities for ISPs

The strategic shift toward integrating high-performance Wi-Fi 7 CPE at the core of multi-gigabit fiber offerings highlights leading ISPs’ efforts to meet consumer demand to spread best-in-class performance throughout the home. This approach not only enhances QoE outcomes but also unlocks new recurring revenue streams for ISPs through bundled equipment and minimum performance guarantees.

European countries and ISPs that swiftly transition a larger share of their base from legacy Wi-Fi standards to more advanced CPE will maintain a significant competitive edge in differentiating their fiber experiences. 


Ookla can assist ISPs, venue owners, and companies in designing Wi-Fi networks, monitoring their performance, and optimizing them. Please contact us to learn more about Speedtest Intelligence and Ekahau.

  1. Sample share based on Android only. ↩︎

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| February 24, 2025

Illustrating the Global State of 5G SA (Poster Download)

Global 5G SA rollouts are gaining momentum after a sluggish start, with China, India, Singapore, and the U.S. maintaining a substantial lead

The telecoms industry is approaching the midpoint of the 5G technology cycle, with capital investment in radio access network (RAN) expansion slowing significantly in developed markets over the last two years as the initial 5G coverage layer nears maturity. Many advanced operators are now prioritizing network densification while cautiously transitioning to a new 5G core architecture with standalone (SA), seeking to unlock new monetization opportunities through the enhanced flexibility, agility, and performance that 5G SA enables.

The interplay of high interest rates driving up the cost of capital, challenges in monetizing the initial non-standalone (NSA) architecture, and the technical complexity of the new 5G core—demanding an entirely new skill set to support implementation—has weighed on the global rollout of 5G SA, with significant regional disparities persisting in commercialization progress.

For the first time, and with the goal of offering deeper insight into the state of 5G SA worldwide, Ookla® has created a high-resolution downloadable poster based on Speedtest Intelligence® data, providing a unified view of the global reach of both 5G NSA and 5G SA networks in 2024. This visual is part of a flagship global study in collaboration with Omdia, comparing the competitiveness of leading regions and countries in 5G SA deployment, performance, and monetization.


Key Takeaways:

Asia Pacific remains at the forefront of global 5G SA deployment

In 2024, seven of the top ten countries by 5G SA reach were in Asia Pacific, with China (77.1% 5G SA sample share), India (51.1%), and Singapore (37.5%) leading globally. The region’s strong position has been driven by a higher number of multi-operator 5G SA deployments (as seen in China and Australia), extensive low-band rollout (such as Reliance Jio’s use of the 700MHz band for deep nationwide coverage in India), and favorable demographics, including very high urbanization in countries like Singapore.

Asia Pacific leads the world in 5G SA reach
Speedtest Intelligence® | 2024

Outside of Asia Pacific, the United States also ranks highly in 5G SA reach, despite only one of its three largest operators engaging in a commercial launch to date. In contrast, just two European countries—Spain and Austria—make the top ten, highlighting the region’s slow pace of 5G SA deployment and the broader decline in its global competitiveness in mobile network infrastructure during the 5G cycle.

Spectrum diversity propels the U.S. to a leading position in 5G SA performance

The U.S. has distinguished itself with significantly higher 5G SA reach than competing regions like Europe while also delivering superior median download speeds. In Q4 2024, median download speeds on 5G SA in the U.S. reached 388.44 Mbps, a substantial increase from 305.36 Mbps in the same period the previous year, and well ahead of Asian competitors such as Japan (254.18 Mbps) and China (224.82 Mbps).

The U.S.’s strong performance has been driven by T-Mobile’s post-merger 5G SA buildout—the first globally—which balanced nationwide reach with network depth. Its “layer cake” strategy combined a broad 600 MHz rollout, initially launched as 5G NSA in 2019 before transitioning to 5G SA in 2020, with mid-band deployments in the 2.5 GHz band. This approach has allowed T-Mobile to more extensively implement features like carrier aggregation and Voice over NR (VoNR) on its maturing 5G SA network, lending it a competitive edge in both availability and key performance metrics such as download speed and latency.


South Korea led the world in Q4 2024 with the highest median 5G SA download speeds at 746.25 Mbps, driven by its exclusive use of the 3.5 GHz band. However, it continues to trail its regional peers in 5G SA reach due to the challenging propagation characteristics exhibited by this spectrum and the limited commercialization beyond a single operator, KT.

5G SA enhances download speeds and latency globally, yet uplink advancements remain underutilized

Globally, 5G SA networks are delivering significantly improved performance across key metrics compared to the non-standalone architecture. In Q4 2024, median latency—a key beneficiary of transitioning to the 5G core—was nearly 20% lower on 5G SA networks compared to 5G NSA networks in Europe and China, and more than 25% lower in the United States and Japan. Similarly, median download speeds on 5G SA were more than 57% higher in Europe and 84% higher in China than those on non-standalone networks.

European 5G SA Users Benefit from Markedly Lower Latency and Higher Download Speed
Speedtest Intelligence® | Q4 2024

Notwithstanding these improvements, 5G SA’s full potential remains largely untapped in Europe. Advanced uplink capabilities unlocked by the technology—such as higher-order MIMO and carrier aggregation—remain limited to a few operators in leading markets like the United States, highlighting the still nascent profile of the device and equipment ecosystems for 5G SA. 


A detailed analysis of the state of 5G SA around the world is featured in Ookla’s flagship report, produced in collaboration with Omdia, on regional competitiveness in the technology.

Ookla will be at Mobile World Congress this year, located at Booth 2I28 in Hall 2. Please drop by to discuss the state of connectivity in your market, and how Ookla’s network insights can help deliver better connected experiences.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| February 23, 2025

A Global Evaluation of Europe's Competitiveness in 5G SA

The European Commission has positioned 5G SA at the center of its emerging pro-growth industrial strategy to boost competitiveness. Yet, despite setting the most ambitious 5G infrastructure targets of any advanced liberal economy, Europe trails the US and Asia in deployment progress.

The global rollout of 5G standalone (SA) networks is gaining momentum after a slower-than-expected start, driven in part by its technical complexity and significant capital requirements in a challenging business environment. Operators continue to advance cautiously, seeking monetization strategies to capture new revenues in both consumer and enterprise segments.

For governments, being at the frontier of the next phase of the 5G cycle is a key differentiator, with the low-latency and high-reliability capabilities of 5G SA pitched as critical to enabling new industrial applications, strengthening digital competitiveness, and attracting inward investment. Mobile networks are now a core pillar of strategic national infrastructure.

The European Commission’s commitment to high-performing mobile network infrastructure has been a hallmark of its Digital Decade program in recent years, further strengthened by the recent launch of the “Competitiveness Compass”—a key strategic framework based on the recommendations of Mario Draghi’s high-profile report. This initiative aims to enhance Europe’s competitiveness in critical industries through a new pro-growth industrial strategy, prioritizing 5G SA investments as a central driver of the program.

However, despite setting the most ambitious 5G infrastructure targets of any advanced liberal economy, Europe currently features the poorest outcomes in terms of 5G SA performance and availability among major global regions. Across Europe, significant disparities in 5G SA rollout progress among countries have undermined the bloc’s competitiveness in the technology, widening the gap with leaders like the US and China.

For the first time, Ookla, in collaboration with Omdia, has published comprehensive research on the global reach and performance of 5G SA networks. The report focuses on Europe’s competitiveness in the technology, progress in monetizing the 5G core for consumer and enterprise use cases, and successful government policies, forming part of a flagship global report on 5G SA commercialization progress.


Key Takeaways:

Europe severely lags other major regions in 5G SA rollout and performance

In Q4 2024, China (80%), India (52%), and the United States (24%) led the world in 5G SA availability based on Speedtest® sample share, markedly ahead of Europe (2%). The region also lagged behind its peers on other key metrics, with the median European consumer experiencing 5G SA download speeds of 221.17 Mbps—lower than those in the Americas (384.42 Mbps) and both Developed (237.04 Mbps) and Emerging (259.73 Mbps) Asia Pacific. The interplay of earlier deployments, a more diversified multi-band spectrum strategy, and greater operator willingness to invest in the 5G core to monetize new use cases have driven rollouts at a faster pace in regions outside Europe.

Europe Trails Other Regions in 5G SA Availability and Performance
Speedtest Intelligence® | Q1 2023 – Q4 2024

Europe exhibits significant disparities in 5G SA deployment among member states

Within Europe, while 5G SA rollout progress remains highly varied, the best outcomes have been observed in countries that have specific policies intended to incentivize 5G SA deployment. Germany, the United Kingdom, and Spain—all four-player markets benefiting from targeted 5G SA-specific fiscal stimuli or coverage obligations— lead Europe in terms of 5G SA rollout across multiple operators. Meanwhile, Southern and Central European countries have supplanted the Nordics at the forefront of this phase of the 5G cycle, with Greece (547.52 Mbps) leading on median download speed in Q4 2024 thanks to its 3.5 GHz usage, and Spain and Austria excelling in rural 5G SA coverage on the back of intensive deployment of the 700 MHz band.

Spain and Austria Lead Europe's 5G SA Rollout in Urban Areas as Expansion Accelerated at the end of 2024
Speedtest Intelligence® | Q1 2023 – Q4 2024

For Europe, the performance improvements unlocked by 5G SA demonstrate the strategic importance of the technology in driving digital competitiveness

Globally, 5G SA networks are delivering significantly improved performance across key metrics compared to the non-standalone architecture. In Q4 2024, median latency—a key beneficiary of transitioning to the 5G core—was nearly 20% lower on 5G SA networks compared to 5G Non-Standalone (NSA) networks in Europe and China, and more than 25% lower in the United States and Japan. Similarly, median download speeds on 5G SA were more than 57% higher in Europe and 84% higher in China than those on non-standalone networks.

European 5G SA Users Benefit from Markedly Lower Latency and Higher Download Speed
Speedtest Intelligence® | Q4 2024

Notwithstanding these improvements, 5G SA’s full potential remains largely untapped in Europe. Advanced uplink capabilities unlocked by the technology—such as higher-order MIMO and carrier aggregation—remain limited to a few operators in leading markets like the United States, highlighting the still nascent profile of the device and equipment ecosystems for 5G SA. 

To capture the full monetization potential of the technology, European operators need to adapt their business models and cater to new verticals

While 5G investments in Europe have yet to yield significant monetization, operators in other regions are leveraging the enhanced performance and flexibility of the new 5G core to drive tariff and service innovation. They are focusing on consumer segmentation with performance-oriented tariff upsells and developing tailored network slices to deliver new services across diverse enterprise verticals.

European operators at the forefront of business model evolution with 5G SA—such as BT’s EE in the UK, Deutsche Telekom in Germany, Elisa in Finland, and 3 in Austria—are leveraging the technology to consolidate their positions at the premium end of the market and stimulate average revenue per user (ARPU) growth.


Download the full report

For an in-depth, first-of-its-kind analysis of Europe’s competitiveness in 5G SA—covering global deployment and monetization trends, Speedtest Intelligence® network performance data, Omdia’s adoption and core spending forecasts, and key policy recommendations to strengthen Europe’s competitiveness—download our full white paper, A Global Evaluation of Europe’s Competitiveness in 5G SA.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| February 5, 2025

Starlink Shines in Europe as Constellation Investments Boost Performance

Recent satellite launches have improved Starlink’s performance in Europe, bolstering its credentials as a competitive broadband solution.

While Europe may not represent the largest market for satellite solutions compared to other large landmass regions with lower fiber density and a greater share of the population living in rural areas, low Earth orbit (LEO) constellations have emerged as an important part of the connectivity toolkit in the region. 

SpaceX’s Starlink has secured a leading position in the LEO market, both in Europe and globally. With a network of more than 7,000 satellites worldwide, it remains the most capable in terms of coverage and capacity, providing broadband access throughout most of Europe.

As Starlink adoption on the continent has surged, even in unexpected places like London—where network capacity has been exhausted and the service is sold out—SpaceX has moved swiftly to bolster its constellation. The company ramped up investments to increase the density of its ground stations and launched a blitz of new satellites in the latter half of last year.

This article explores how SpaceX’s investments are contributing to Starlink’s performance in Europe as the service scales up amid intensifying competition from the rapid expansion of fiber-to-the-home (FTTH) infrastructure across the continent. 

Key Takeaways:

  • Significant improvements in latency translate into better quality of experience (QoE) for Starlink users across Europe. The latency disparity between Starlink and the aggregate terrestrial fixed broadband market has narrowed substantially across Europe over the past two years. In Q4 2024, Starlink users in Western Europe experienced the lowest median latencies on the continent, with the United Kingdom (41 ms), Belgium (46 ms) and Luxembourg (46 ms) leading the way. Improvements in latency have boosted Starlink’s QoE performance for video streaming, web browsing and gaming, as evidenced by outcomes such as shorter video start times and reduced game latency.
  • Starlink’s download speeds are recovering in most countries as SpaceX continues to scale capacity with recent satellite launches. In Q4 2024, most European countries experienced an improvement in Starlink download speeds, likely driven by the continued expansion of the satellite constellation. The sharp increase in operational satellites at the end of October last year appears to have contributed to higher speeds across multiple countries, with some regions seeing particularly notable gains. Southern European countries such as Croatia (~70%) and Greece (~65%) recorded substantial quarter-on-quarter download speed increases between the third and fourth quarters of last year, now ranking among the fastest Starlink connections in Europe.
  • Starlink adoption is more highly concentrated in countries with lower levels of fiber penetration and a larger proportion of the population living in rural areas. Central and Southern European countries such as Germany, Greece, Italy and Croatia have below-average FTTH coverage compared to the EU average and exhibit higher levels of Starlink adoption, likely due to the LEO solution being relatively more competitive (either on performance or price) in these regions. At the same time, while Starlink continues to provide higher speeds than the aggregate terrestrial fixed broadband market in some countries—including Greece, the Czech Republic, Italy, and Croatia—the number of such markets is steadily decreasing. Significant fiber investments across Europe have improved fixed broadband speeds over the past two years, increasingly challenging Starlink’s competitiveness.

A Surge in Satellite Launches Expanded the Starlink Constellation in Late 2024
Source: SatelliteMap.space


Starlink latency improvements continue at pace across Europe

The physics of transmitting data across vast distances between Earth and space has long challenged satellite operators in their efforts to compete with terrestrial fixed broadband services in Europe on latency. Starlink’s LEO system has been a game-changer, significantly improving latency performance compared to traditional satellite systems that rely on mid-Earth or geostationary orbits.

Over the last two years, SpaceX has been focused on building on this advantage and narrowing the disparity between the performance of its service and what is available from terrestrial fixed operators. To achieve this, it has sought to reduce the distance and number of hops data travels across its network. This has involved massively expanding its satellite constellation over Europe—boosting inter-satellite links for more direct routing—and increasing ground station density to optimize connections to the terrestrial internet.

While the latencies observed in the aggregate fixed broadband market remain materially lower than those of Starlink across Europe, there has been remarkable progress in improving its competitiveness. Speedtest Intelligence® data reveals a consistent trend of double-digit declines in median latency across over a dozen European countries between Q4 2023 and Q4 2024. 

During the period between Q4 2023 and Q4 2024, countries in Central and Southern Europe recorded significant improvements in Starlink’s median latency performance. Greece saw its median latency decline by 54%, while Switzerland and Austria saw declines of 28% and 27% respectively. These improvements are contributing to Western Europe’s strong overall performance in latency on Starlink connections, with several countries now approaching the 40 ms mark for the first time. The United Kingdom led the continent with a median latency of 41ms in Q4 2024, followed by Belgium (46 ms), Luxembourg (46 ms) and Ireland (47 ms).

This rapid pace of improvement in latency comes from a high baseline but is at least twice as fast as the underlying rate of improvement in the aggregate fixed broadband market across most European countries. A notable exception is Spain, where Starlink’s median latency of 54 ms showed only a 4% reduction over the year, matching the modest improvement seen in the rest of the country’s fixed broadband market. This limited improvement may reflect orbit-related factors, as neighboring Portugal also experienced a relatively small 8% reduction in Starlink latency compared to the larger improvements observed in most other European countries.

Starlink's Varied Performance Reflects Europe's Regional Diversity
Speedtest Intelligence® | Q4 2024

Across Starlink’s European footprint, latency outcomes continue to vary significantly by country. In Southern Europe, Cyprus (144 ms) and Malta (106 ms) recorded some of the continent’s highest latency in Q4 2024, while Nordic countries like Finland (89 ms) and Norway (79 ms)—despite often leading in Ookla’s terrestrial benchmarks—also lagged behind.

These regional disparities in latency performance highlight the immense technical challenge of delivering uniform service across Europe. Higher-latitude Nordic countries often rely on Starlink’s polar-orbit satellites for coverage in the far north, which can impact performance. Meanwhile, Cyprus and Malta’s higher latency may stem from a limited ground station presence, increasing reliance on inter-satellite links for connectivity.


Shifts in download speeds indicate Starlink is balancing capacity and demand in Europe

Unlike latency, which has seen significant and sustained improvements across most European countries over the past two years in Speedtest Intelligence data, Starlink’s download speed performance has faced growing pressure as the service scaled and network usage increased.

Between Q4 2022 and Q4 2023, Central European countries saw some of the steepest declines in median download speeds. In Germany, speeds fell by 31%—from 94.37 Mbps to 65.44 Mbps—while Switzerland recorded a 24% drop, going from 136.03 Mbps to 103.88 Mbps. Combined with the backdrop of improving median download speeds in terrestrial fixed broadband—driven by accelerating FTTH deployment and adoption—Starlink’s competitiveness on speed eroded over this period in many parts of Europe. 

For the first time in Q4 2024, there were signs that the successive speed declines observed in previous quarters may have stabilized, with early indications of a potential recovery. However, given quarter-to-quarter variability, it remains to be seen whether this trend will hold in the coming year.

Nonetheless, the timing of these improvements dovetails with the reported jump in the number of Starlink satellites in service from late October last year, likely reflecting the additional capacity afforded by an expanded constellation above Europe.

Starlink Download Speeds Improved in Most European Countries in Q4 2024 Following Constellation Expansion
Speedtest Intelligence® | Q4 2022 — Q4 2024


While most European countries recorded a material quarter-on-quarter boost in Starlink’s median download speeds in Q4 2024, the most pronounced gains were concentrated in Southern Europe. The significant improvements in countries like Croatia (~70%) and Greece (~65%) have propelled them to be among the top in Europe in terms of median download speed on Starlink, joining other neighbors in nearby countries like Hungary and Romania.

Even the previously mentioned examples, Germany and Switzerland, for the first time in almost two years, saw a quarter-on-quarter speed increase in Q4 2024, rising by 18% and 11% respectively. The overall movements have left countries in Central and Southern Europe trailing in Starlink’s median download speed, with Cyprus (36.52 Mbps) and Malta (53.85 Mbps) ranking similarly as poorly as in latency, but others—most notably the Nordics—performing relatively better on median download speed than latency.

Despite the decrease in the number of countries where Starlink delivers higher median download speeds than the aggregate terrestrial fixed broadband market over time, principally a result of rising FTTH adoption driving improved fixed performance, several countries still stand out.

Starlink is Competitive with Fixed Operators in Southern Europe on Download Speed
Speedtest Intelligence® | Q4 2024

For example, in Q4 2024, median download speeds on Starlink were faster in Greece, Croatia, Italy, Austria, the Czech Republic and Estonia than the aggregate terrestrial fixed broadband speeds in these markets, all of which feature FTTH coverage below the EU average.

In the many countries where Starlink is not ahead of the rest of the fixed market on download speed performance—which is the majority of European countries—it remains competitive on other related metrics, including consistency, which measures the proportion of Speedtest samples exceeding minimum thresholds of 25 Mbps for download and 3 Mbps for upload.

In the United Kingdom, for example, Starlink’s consistency performance remained within the range of the rest of the fixed market over the last year, behind operators like Virgin Media and Vodafone but ahead of TalkTalk and PlusNet. In QoE measures such as Game Score™ (a 0-100 weighted sum incorporating multiple video performance factors), it has steadily closed the gap with the broader UK fixed market, narrowing from over 5 points in Q4 2023 to less than 3 points in Q4 2024.

This improvement in video QoE on Starlink connections has been observed across many European countries over the past year, driven by reductions in adaptive start time and failure rates—resulting in Starlink users spending less time waiting for videos to load and experiencing fewer playback issues—as well as enjoying an increase in average video bitrate.


Starlink adoption continues to be shaped by regional demographics and the varying availability of high-speed broadband

The relative penetration of Starlink across Europe (based on analysis of share of Speedtest samples) remains highly varied by country and region, shaped largely by demographics and the profile of available fixed broadband technologies in each market. Highly urbanized countries with a small share of the population living in rural areas, such as the Nordics and the Benelux region, exhibit lower levels of Starlink adoption.

Higher-than-average fiber availability and take-up in these countries (corresponding to a larger share of fixed subscriptions providing download speeds of at least 100 Mbps), combined with the performance declines at higher latitudes closer to polar orbits, mean that Starlink may not be a competitive broadband access solution for a large proportion of the population. Other factors, such as high levels of fixed wireless access (FWA) penetration—offering higher performance at lower prices than Starlink—in countries such as Finland may also contribute to dampening the appeal of LEO services there.

Starlink Adoption is Highest in Southeastern Europe, Moderate in Central and Western Europe and Lowest in Fiber-Rich Nordic and Benelux Regions
Speedtest Intelligence® | Starlink Share (%) of Total Fixed Speedtest Samples in Q4 2024

A corollary is seen in parts of Central and Southern Europe, where Starlink is relatively more competitive as a fixed broadband solution and measured take-up of alternatives like FWA is below the EU average. This is driven by higher Starlink speeds compared to other parts of Europe—particularly in Greece and Croatia—along with the lower-than-average availability of fixed networks offering very high-capacity coverage (as defined by the European Commission for FTTH and DOCSIS 3.1). As a result, Starlink is relatively more competitive in these markets and, in some cases, outperforms terrestrial fixed operators.

The higher proportion of Starlink users in Germany among Europe’s largest economies is likely a consequence of its outdated fixed broadband mix. With some of the lowest FTTH coverage in the EU and higher fixed broadband prices than elsewhere, Starlink adoption may be higher in Germany and present an attractive alternative there despite providing lower speeds than in other parts of the continent. 

Notwithstanding these structural patterns, however, not all instances of Starlink adoption fall neatly into line across Europe. As noted earlier with the example of London, some outliers are driven by specific use cases. For instance, London’s relatively high Starlink usage has been partly linked to its utility beyond home broadband and in providing connectivity for events, supporting card terminals and similar applications.

The LEO space race is heating up above Europe

SpaceX’s ambitions for Starlink in Europe extend well beyond traditional broadband. Over the coming year, the company plans to enter the direct-to-device (D2D) market—widely seen as the next frontier in the LEO space race—by connecting unmodified consumer handsets. This effort is being powered by the launch of SpaceX’s Gen2 satellites, of which the company ultimately hopes to deploy tens of thousands.

The company’s success in transforming the economics of large-scale satellite launches has inspired others to make similar moves. Amazon, for example, plans to deploy over a thousand satellites by mid-2026 through its Project Kuiper initiative, which will focus on mid-latitude coverage (lacking the polar-orbits boasted by Starlink). AST SpaceMobile, meanwhile, is targeting the D2D market and already has five satellites in operation. It aims to expand its constellation to more than 240 satellites.

We look forward to monitoring the satellite market as it expands into the D2D space in the coming months, and will return to check up on how Starlink is performing in other regions beyond Europe. For more information about Speedtest Intelligence data and insights, please contact us.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.