| June 30, 2025

Poland Races to Regain 5G Competitiveness in Europe with Mid-Band Rollout | Polska galopuje do odzyskania konkurencyjności 5G w Europie dzięki wdrożeniu średniego pasma częstotliwości

Polish/Polski

Poland’s operators are rapidly deploying mid-band 5G in an attempt to capture the growing premium market segment

Late to the game in staging a mid-band auction, Poland has lagged behind its European peers in 5G deployment in recent years. This delay has weighed on the country’s global competitiveness in mobile network performance and slowed its progress toward meeting the European Commission’s flagship 5G deployment targets, which require universal 5G coverage across every EU member state by the end of the decade.

This article examines the state of Poland’s mobile market and its broader regional 5G competitiveness in the context of ongoing mid-band deployments. A follow-up report will assess the longer-term impact of the commercialization of the recently awarded low-band spectrum and ongoing network sunsets on network coverage and availability.

Key Takeaways:

  • Intensive capital spending on mid-band deployment drives substantial uplift in 5G performance across Polish operators from Q1 2024, pushing the country ahead of regional peers over the last year. Median 5G download speeds in Poland jumped by over 50% to 160.30 Mbps between Q1 2024 and Q1 2025, based on Speedtest Intelligence® data, propelling the country ahead of Czechia, Romania, and Slovakia for the first time in 5G performance. Despite this progress, Poland continues to trail its regional peers in 5G network Consistency, a measure of how reliably a mobile connection remains “fast enough” for normal use.
  • T-Mobile and Orange surpass Play and Plus in speed and select Quality of Experience (QoE) measures. Differences in how quickly and extensively Polish operators have deployed their mid-band spectrum assets have led to a diverging market profile since Q1 2024, with T-Mobile and Orange significantly extending their speed lead over their rivals. Between Q1 2024 and Q1 2025, median 5G download speeds rose by as much as 72% on Play (to 122.64 Mbps), 86% on T-Mobile (to 201.76 Mbps), and 90% on Orange (to 222.10 Mbps)—while declining by over 10% on Plus (to 116.76 Mbps). 
  • Network investments have broadened 5G coverage in Poland, but significant regional disparities remain. Nationally, 5G availability rose from 28.5% in Q1 2024 to 43.1% in Q1 2025, driven by continued Dynamic Spectrum Sharing (DSS) rollouts and the activation of mid-band spectrum—placing the country ahead of regional peers Bulgaria, Romania, and Hungary in 5G availability. Nonetheless, by Q4 2024, a pronounced coverage gap persisted between the country’s best- and worst-served provinces, with 5G availability in the populous Masovian Voivodeship (47.2%) double that of the Lubusz Voivodeship (23.6%).

Over the last year, Polish operators have been locked in an intense four-way race to catch up with their regional peers in 5G deployment, driven by stringent coverage obligations imposed by the Polish telecoms regulator (UKE), a wave of funding support from Brussels, and a growing push to compete for a larger share of the country’s widening premium market segment, where network performance has emerged as a key competitive differentiator.

Poland’s mobile market is today awash with deployment activity, as operators ramp up capital spending to the highest levels in years to equip thousands of mobile sites with mid-band spectrum, accelerate the sunset of 3G networks, and lay the groundwork for launching 5G standalone (SA) in the coming years. This flurry of activity follows the completion of the 700/800 MHz auction at the end of March this year, where all Polish operators secured low-band 5G spectrum for the first time—paving the way for improved rural and deep in-building 5G coverage and rounding out the country’s 5G spectrum release plans.

While 5G capital spending has slowed across much of Europe, Poland sees different dynamics due to late spectrum auctions

Poland was notably late in releasing dedicated 5G spectrum in the ‘pioneer bands’ identified by the European Commission as critical to the timely commercialization and rollout of 5G across EU member states. The country’s mid-band (3.6 GHz) auction, initially planned for mid-2020, was repeatedly delayed—by more than three years—due to the pandemic and a protracted security legislation process. 

These delays in spectrum availability have contributed to Poland’s divergence from much of the rest of Europe in both the economic and technical dimensions of the 5G rollout. Until recently, Polish mobile operators exhibited lower capital intensity (they invested less of their revenue) compared to peers in other European countries. Most of their spending went into upgrading 4G sites and preparing for the 3G shutdown, instead of building a new 5G mid-band capacity layer or expanding 5G coverage using low-band (700 MHz) spectrum.

Orange's Rising Mobile Capex Reflects 5G Network Expansion
Analysis of Orange Poland accounts | 2020 – 2024

Analysis of financial data published by Orange, Poland’s largest mobile operator by subscriber count, confirms that the era of lower capital intensity (relative to elsewhere in Europe) is over. The recent spectrum auctions have triggered a new cycle of investment, with Orange doubling its mobile network spending in the past three years. Play has also rapidly increased its investment, as its French parent Iliad reported injecting record amounts into Play’s mobile infrastructure last year.

Play's Contribution to Capex in the Iliad Group Surges as 5G Buildout Ramps Up
Analysis of Iliad Group accounts | 2020 – 2024

On the technical side, meanwhile, Poland’s spectrum delay meant that three of the country’s four operators were forced to rely heavily on Dynamic Spectrum Sharing (DSS)—a technology that allows 4G and 5G to operate on the same band and adjust ‘dynamically’ to demand—in an effort to deliver early 5G coverage in the 2100 MHz band while awaiting spectrum auctions. This strategy resulted in Poland’s initial 5G performance more closely resembling those typical of 4G networks, as DSS deployments are typically based on a 10 MHz carrier where part of the capacity is still reserved for 4G signals, making 5G speeds with DSS around 15–25 % lower than if the band were dedicated solely to 5G.

The limitations of using DSS to deliver a “5G experience” were exemplified by the speed advantage maintained by Plus earlier in the 5G rollout. Importantly, Plus was the only Polish operator that did not rely on DSS and instead dedicated a full 40 MHz carrier in the 2600 MHz (TDD) band to 5G before mid-band spectrum became available at the start of last year. Prior to the 3.5 GHz band coming online, when the other operators were still wholly dependent on DSS for 5G coverage, Plus’s median 5G download speed of 133.34 Mbps was as much as 77 % higher than T-Mobile’s, 81 % higher than Orange’s, and 92 % higher than Play’s. 

Intense Mid-Band Deployment lifts Poland’s Regional 5G Competitiveness and Reshapes Operator Dynamics

Polish operators move from mid-band spectrum acquisition to mass commercial deployment in record time

The pent-up demand for mid-band spectrum in Poland was evident when mobile operators like Orange, T-Mobile, and Play launched commercial services just three months after acquiring mid-band spectrum, moving quickly from the auction in October 2023 to commercial launches by January 2024. T-Mobile reported that its mid-band 5G network already covered more than 25% of the Polish population by April 2024, with more than 2,100 sites active, while Orange announced it had reached 40% coverage by mid-June.

This rollout pace is exceptional by European standards and indicative of the increased pace of deployment possible later in the 5G technology cycle. It took Spain’s Telefónica (Movistar) about six months to reach its first 1,000 mid-band sites by comparison, and Germany’s operators needed around nine months to achieve the same milestone.

Plus's Spectrum Holdings in the 2600 MHz TDD Band Lend it a Decisive Capacity Lead

Each operator secured a contiguous 100 MHz block of spectrum in the 3.5 GHz band, which is widely regarded as optimal due to the large channel bandwidth this configuration affords. However, Plus has been notably slower to commercialise this allocation at scale. Plus’s earlier strategy of deploying 5G in the dedicated 2600 MHz band (rather than relying on DSS), alongside later using the 2100 MHz band as well, gave it more flexibility to delay a broad mid-band rollout as it previously enjoyed a significant 5G speed advantage over competitors while they were still heavily dependent on DSS deployments. 

Mid-band deployment shifts 5G performance rankings among Polish operators

Mass deployment of a new capacity layer by the other three operators has since decisively altered performance dynamics in the Polish market and eroded Plus’s lead. In the space of one year between Q1 2024 and Q1 2025, Plus has moved from market leader in median 5G download speed to laggard, becoming the only Polish operator to see a year-on-year decline in 5G speed, down 10%, indicating the increasing limitations of its 2600 MHz strategy. 

Orange and T-Mobile Pull Ahead in 5G Performance with Mid-Band Deployment
Speedtest Intelligence® | Q1 2023 – Q1 2025

By contrast, mid-band deployment has boosted performance across the rest of the market, with median 5G speeds rising by as much as 72% on Play, 86% on T-Mobile, and 90% on Orange between Q1 2024 and Q1 2025. While Orange led the Polish market in Q1 with a median 5G download speed of 222.11 Mbps, the operator’s lead has narrowed significantly as T-Mobile’s mid-band buildout has progressed, with T-Mobile now recording median 5G download speeds of 201.76 Mbps, well ahead of third- and fourth-placed Play (122.64 Mbps) and Plus (116.76 Mbps), respectively.

Plus's Lead in 5G Consistency Narrows as 2600 MHz Advantage Recedes with Mid-Band Deployment
Speedtest Intelligence® | Q1 2023 – Q1 2025

Despite losing its lead in median 5G download speed, Plus continues to lead at the 10th percentile (29.44 Mbps in Q1 2025), meaning subscribers in its lowest-performing areas still enjoy comparatively better speeds than those on rival networks. This advantage is likely linked to Plus’s lower dependence on DSS. However, T-Mobile (24.48 Mbps) and Orange (21.88 Mbps) are quickly closing the gap, with their 10th percentile 5G speeds now converging toward Plus. Plus’s 5G network consistency, measured as the proportion of Speedtest samples meeting a minimum download and upload threshold of 25/3 Mbps, has also declined over the past year, although it remains the market leader.

On upload performance, meanwhile, Play’s 5G network led the market in Q1 2025, recording median speeds of 19.33 Mbps, followed by Orange (18.99 Mbps), T-Mobile (17.32 Mbps), and Plus (14.96 Mbps). Unlike the substantial gains seen in download speeds, there is limited evidence so far that the mid-band rollout has materially improved upload performance, with median upload speeds about 6% lower in Q1 2025 compared to the same quarter last year. This discrepancy arises primarily because all four operators continue to deploy 5G in non-standalone (NSA) mode, requiring devices to transmit uplink traffic via existing 4G anchor bands. Consequently, the newly available 3.5 GHz spectrum enhances downlink capacity but leaves the congested 4G uplink path unchanged.

Play Develops Lead in 5G Upload Performance
Speedtest Intelligence® | Q1 2023 – Q1 2025

The operators’ investments in deploying a new 5G capacity layer have coincided with a broader RAN refresh effort, translating into improved quality of experience for users in key use cases such as video streaming and web browsing. Median web page load times on T-Mobile’s network, for instance, improved by around 4% between Q3 2024 and Q1 2025. Orange led in video metrics such as start time, resolution, and uninterrupted playback in the last quarter.

5G Drives QoE Improvements in Use Cases like Web Browsing
Speedtest Intelligence® | Q1 2025

Capital investment expands 5G coverage, but Poland’s rural-urban digital divide persists

While investments in DSS and the mid-band rollout have enabled Polish operators to make significant strides in 5G availability, which increased nationally from 28.5% in Q1 2024 to 43.1% in Q1 2025, regional coverage disparities continue to be a feature of the mobile network experience in Poland. Operators have prioritized 5G deployments in the richest and densest parts of Poland where fiber is heavily deployed, including the Masovian (Warsaw) and Pomeranian (Tri-City) provinces. In these provinces, 5G availability reached more than 40% by the end of last year and contributed to driving materially higher median download speeds than the national average. 

5G Availability Remains Highly Varied Across Poland Outside of Urbanized Areas
Speedtest Intelligence® | 5G Availability (%) in Q4 2024

By contrast, border provinces along the south and west of the country continue to experience much lower levels of 5G availability. Lubusz had the lowest availability (23.6% at the end of last year), where there is lower population density and lower subscriber spending, which reduces operators’ commercial incentives for widespread 5G investment. This trend has driven the development of a notable speed gap between provinces, with mobile subscribers in Lubusz also experiencing the lowest median download speeds (59.97 Mbps) in Poland, almost 33% below the leading Masovian province.

Mobile Download Speeds Are Lower in Less Urbanized Areas of Poland
Speedtest Intelligence® | Median Download Speed (Mbps) in Q4 2024

Mid-band deployment improves Poland’s mobile competitiveness, but 5G consistency continues to trail regional peers

From a regional competitiveness lens, intensive mid-band deployments have been successful in breaking Poland’s cycle of mobile network underperformance, with median 5G download speeds rising by over 50% on average to 160.30 Mbps between Q1 2024 and Q1 2025. This has propelled the country ahead of Czechia, Romania, and Slovakia for the first time in terms of 5G download speed performance.

Mid-Band Deployments Propel Poland's Regional Competitiveness
Speedtest Intelligence® | 2020 – 2025

Despite Poland’s  progress on its mid-band 5G rollout, the lingering effects of reliance on DSS and limited 5G spectrum diversity—up until the recent 700/800 MHz auction—mean that Poland continues to trail its regional peers in terms of 5G network consistency. In Q1 2025, 82% of Speedtest samples in Poland met the minimum 5G performance threshold for a consistent mobile experience, compared to 86% in Hungary, 89% in Romania, and 93% in Bulgaria.

Newfound spectrum diversity lends Polish operators potent tool to stimulate ARPU growth

Poland’s previous reliance on DSS, driven by limited 5G spectrum diversity, likely contributed to its slower average revenue per user (ARPU) growth compared to neighboring countries in recent years. Polish operators initially introduced tariffs with “5G at no extra cost” bolted onto existing 4G bundles, keeping prices flat to defend market share (and thereby maintaining depressed ARPU levels relative to regional peers). Combined with the external shock induced by markedly higher energy prices, stagnant ARPU levels created challenging operating conditions in the Polish market and weighed on operator profitability. 

Intense Priced-Based Competition Precipitated Revenue Erosion in Poland During the First Half of the 5G Cycle
Analysis of GSMA Intelligence Data | % Change in Mobile ARPU (Q1 2020 vs Q1 2023)

In neighboring markets, by contrast, operators were able to leverage mid-band spectrum deployments as both technical and marketing levers, shifting their strategies from price competition toward service-based differentiation. This enabled them to more effectively upsell premium speed tiers or monetize specific use cases, such as fixed wireless access (FWA), which dedicated mid-band 5G deployments uniquely support.

T-Mobile and Play Outpaced Rivals in Subscription Share Growth in Recent Years
Analysis of UKE Market Data | 2019 – 2023

Similarly, the delayed timing of Poland’s mid-band 5G auction likely dampened supply-side factors key for driving growth in mobile data traffic. Between Q1 2020 and Q4 2024, traffic volumes in neighboring Bulgaria converged with that in Poland for the first time, increasing by 4.8x vs. Poland’s 2.6x. Meanwhile, Bulgarian operators capitalized early on mid-band spectrum availability to aggressively promote competitive FWA solutions (a major driver of mobile traffic in developed markets) and to introduce cheap unlimited data tariffs with fewer usage restrictions.

Poland Maintains Regional Lead in Mobile Data Volumes, but Bulgaria is Catching Up
Analysis of GSMA Intelligence data | 2020 – 2024

Polish operators have since sought to replicate Bulgaria’s success by debuting distinct marketing for their mid-band 5G deployments to differentiate the newer mid-band 5G rollouts from earlier DSS-based 5G networks in terms of performance and user experience. T-Mobile has leaned on ‘5G More’ branding, while Plus has used ‘5G Ultra’ to indicate the additional performance gains unlocked by their new 5G networks in locations where dedicated mid-band spectrum is deployed. This strategy has formed part of a broader shift in the market, with all operators moving away from a hyper-focus on price competition and toward ‘more for more’ pricing strategies, supporting improved profitability and renewed ARPU growth in the market with inflation-linked tariffs.

Poland Has Led Regional ARPU Growth Since Mid-Band 5G Deployments Started
Analysis of GSMA Intelligence Data | % Change in Mobile ARPU (Q1 2023 vs Q1 2025)

Low-band activation and network sunset progress set to reinforce mid-band 5G gains

With Poland’s telecom regulator, UKE, having set among Europe’s most ambitious coverage obligations for recent mid- and low-band spectrum auctions, operators are unlikely to delay commercial deployments in the newly acquired 700 and 800 MHz bands. These deployments are expected to start next month and will be crucial for establishing a national 5G coverage layer that, for the first time, extends deep indoors and into rural areas. This expanded coverage will also support wider rollout of voice over LTE (VoLTE) services, accelerating the 3G sunset and freeing up additional spectrum in the 900 MHz band.

We will revisit shortly to assess how Polish operators are progressing with deploying their new low-band spectrum and how effectively it is complementing the ongoing 3G sunset.


Polska galopuje do odzyskania konkurencyjności 5G w Europie dzięki wdrożeniu średniego pasma częstotliwości

Polscy operatorzy przyśpieszyli z wdrażaniem 5G w średnim paśmie, próbując przejąć rosnący segment rynku premium.

Polska, która spóźniła się z przeprowadzeniem aukcji na średnie pasmo, w ostatnich latach pozostawała w tyle za swoimi europejskimi rówieśnikami w zakresie wdrażania 5G. Opóźnienie to odbiło się na globalnej konkurencyjności kraju pod względem wydajności sieci mobilnych i spowolniło postępy w realizacji sztandarowych celów Komisji Europejskiej w zakresie wdrażania 5G, które wymagają powszechnego zasięgu 5G w każdym państwie członkowskim UE do końca dekady.

Niniejszy artykuł analizuje stan polskiego rynku telefonii komórkowej i jego szerszą regionalną konkurencyjność 5G w kontekście trwających wdrożeń średniego pasma. Kolejny raport oceni długoterminowy wpływ komercjalizacji niedawno przyznanego niskiego pasma na potrzeby pokryciowe 5G.

Kluczowe wnioski:

  • Intensywne wydatki kapitałowe na wdrożenie średniego pasma napędzają znaczny wzrost wydajności 5G u polskich operatorów od pierwszego kwartału 2024 r., pozycjonując kraj przed regionalnych konkurentów w ciągu ostatniego roku. Mediana prędkości pobierania 5G w Polsce wzrosła o ponad 50% do 160,30 Mb/s w okresie od I kwartału 2024 r. do I kwartału 2025 r., w oparciu o dane Speedtest Intelligence®, dzięki czemu Polska po raz pierwszy wyprzedziła Czechy, Rumunię i Słowację pod względem wydajności 5G. Pomimo tego postępu, Polska nadal pozostaje w tyle za swoimi regionalnymi rówieśnikami pod względem spójności sieci 5G, która jest miarą tego, jak niezawodnie zestawione połączenie mobilne pozostaje “wystarczająco szybkie” do normalnego użytkowania.
  • T-Mobile i Orange przewyższają Play i Plus pod względem prędkości i wybranych wskaźników jakości doświadczenia usług (QoE). Różnice w strategiach, jak szybko i szeroko polscy operatorzy wdrożyli swoje aktywa widma w średnim paśmie, doprowadziły do rozbieżnego profilu rynku od pierwszego kwartału 2024 r., przy czym T-Mobile i Orange znacznie zwiększyły swoją przewagę w zakresie prędkości nad rywalami. Pomiędzy I kwartałem 2024 r. a I kwartałem 2025 r. mediana prędkości pobierania 5G wzrosła aż o 72% w Play (do 122,64 Mb/s), 86% w T-Mobile (do 201,76 Mb/s) i 90% w Orange (do 222,10 Mb/s) – przy jednoczesnym spadku o ponad 10% w Plusie (do 116,76 Mb/s).
  • Inwestycje sieciowe zwiększyły zasięg 5G w Polsce, ale nadal utrzymują się znaczne różnice regionalne. W ujęciu krajowym dostępność sieci 5G wzrosła z 28,5% w I kwartale 2024 r. do 43,1% w I kwartale 2025 r., co wynikało z dalszego wdrażania dynamicznego współdzielenia widma (DSS) i aktywacji widma w średnim paśmie, dzięki czemu Polska wyprzedziła pod względem dostępności sieci 5G regionalne kraje takie jak Bułgaria, Rumunia i Węgry. Niemniej jednak do IV kwartału 2024 r. utrzymywała się wyraźna luka w zasięgu między najlepiej i najgorzej obsługiwanymi województwami w kraju, przy czym dostępność 5G w zaludnionym województwie mazowieckim (47,2%) była dwukrotnie wyższa niż w województwie lubuskim (23,6%).
  • Wyłączenia sieci 3G (ang. “3G sunset”) powodują gwałtowny spadek czasu spędzonego na 3G w 2024 r., ponieważ polscy operatorzy reorganizują widmo dla 4G (ang. “refarming”), ale ma to ogromny wpływ na dostępność usług w miejscach mniej zurbanizowanych. Podczas gdy T-Mobile pozostał jedynym polskim operatorem, który w pełni zakończył proces wygaszania sieci 3G do pierwszego kwartału 2025 r., zarówno Orange, jak i Play czynią obecnie znaczne postępy w zakresie refarmingu widma 3G 900 MHz i 2100 MHz na potrzeby 4G. Czas spędzony na 3G spadł poniżej 3% dla obu operatorów do końca 2024 roku. Natomiast abonenci Plusa nadal spędzali znacznie więcej czasu w sieci 3G – 13,41% na koniec 2024 roku.

W ciągu ostatniego roku polscy operatorzy byli jednak zamknięci w intensywnym wyścigu, aby dogonić swoich regionalnych kolegów we wdrażaniu 5G, napędzanym przez rygorystyczne obowiązki w zakresie zasięgu nałożone przez polskiego regulatora telekomunikacyjnego (UKE), falę wsparcia finansowego z Brukseli i rosnące dążenie do konkurowania o większy udział w poszerzającym się segmencie rynku premium w kraju, w którym wydajność sieci stała się kluczowym wyróżnikiem konkurencyjnym.

Polski rynek telefonii komórkowej jest dziś zdominowany aktywnością wdrożeniową, stąd operatorzy zwiększają wydatki kapitałowe do najwyższych poziomów od lat, aby wyposażyć tysiące stacji bazowych w widmo średniego pasma, przyspieszyć wyłączanie sieci 3G i położyć podwaliny pod uruchomienie samodzielnej sieci 5G (SA) w nadchodzących latach. Taką falę aktywności można zwłaszcza zauważyć po zakończeniu aukcji 700/800 MHz pod koniec marca tego roku, w której wszyscy polscy operatorzy po raz pierwszy zabezpieczyli widmo 5G w niskim paśmie – torując sobie drogę do poprawy zasięgu 5G na obszarach wiejskich i głęboko wewnątrz budynków (ang. “deep in-building”) w miastach oraz uzupełniając krajowe plany udostępniania widma 5G.

Podczas gdy wydatki kapitałowe na 5G spowolniły w dużej części Europy, Polska doświadcza inną dynamikę ze względu na późne aukcje na częstotliwości

Polska znacznie spóźniła się z udostępnieniem dedykowanych częstotliwości 5G w “pionierskich” pasmach zidentyfikowanych przez Komisję Europejską jako krytyczne dla terminowej komercjalizacji i wdrożenia 5G w państwach członkowskich UE. Krajowa aukcja częstotliwości pasma środkowego (3,6 GHz), początkowo planowana na połowę 2020 r., była wielokrotnie opóźniona – o ponad trzy lata – z powodu pandemii i przedłużającego się procesu legislacyjnego w zakresie bezpieczeństwa.

Te opóźnienia w dostępności częstotliwości przyczyniły się do tego, że Polska odbiega od reszty Europy zarówno w wymiarze ekonomicznym, jak i technicznym wdrażania 5G. Do niedawna polscy operatorzy komórkowi wykazywali niższą kapitałochłonność (inwestowali mniejszą część swoich przychodów) w porównaniu do innych europejskich operatorów. Większość ich wydatków przeznaczono na modernizację 4G i przygotowanie do wyłączenia 3G, zamiast budować nową warstwę pojemności 5G w średnim paśmie lub rozszerzać zasięg 5G przy użyciu niskich częstotliwości (700 MHz).

Rosnące nakłady Orange na sieć mobilną odzwierciedlają rozwój sieci 5G
Analiza rachunków Orange Polska | 2020–2024

Analiza danych finansowych opublikowanych przez Orange, największego operatora komórkowego w Polsce pod względem liczby abonentów, potwierdza, że era niższej kapitałochłonności (w porównaniu z innymi krajami w Europie) dobiegła końca. Niedawne aukcje częstotliwości wywołały nowy cykl inwestycyjny, a Orange podwoił wydatki na sieć mobilną w ciągu ostatnich trzech lat. Play również gwałtownie zwiększył swoje inwestycje, jego francuska spółka dominująca Iliad poinformowała w zeszłym roku o zainwestowaniu rekordowych kwot w infrastrukturę mobilną Play.

Udział Play w nakładach inwestycyjnych Grupy Iliad gwałtownie rośnie wraz z przyspieszeniem rozbudowy sieci 5G
Analiza rachunków Grupy Iliad | 2020–2024

Tymczasem od strony technicznej opóźnienie aukcji częstotliwości 5G w Polsce oznaczało, że trzech z czterech operatorów w kraju było zmuszonych w dużym stopniu polegać na dynamicznym współdzieleniu widma (ang. “Dynamic Spectrum Sharing” – DSS) – technologii, która pozwala 4G i 5G działać w tym samym paśmie i “dynamicznie” dostosowywać się do zapotrzebowania na pojemność danej technologii – w celu zapewnienia wczesnego zasięgu 5G w paśmie 2100 MHz w oczekiwaniu na aukcje częstotliwości. Strategia ta spowodowała, że początkowa wydajność 5G w Polsce bardziej przypominała typową dla sieci 4G, ponieważ wdrożenia DSS są zwykle oparte na nośnej 10 MHz, w której część pojemności jest nadal zarezerwowana dla sygnałów 4G, co powoduje, że prędkości 5G z DSS są o około 15-25% niższe niż gdyby pasmo było przeznaczone wyłącznie dla 5G.

Ograniczenia wykorzystania DSS do zapewnienia “doświadczenia 5G” zostały zilustrowane przewagą prędkości utrzymywaną przez Plusa na wcześniejszym etapie wdrażania 5G. Co ważne, Plus był jedynym polskim operatorem, który nie polegał na DSS i zamiast tego przeznaczył pełną nośną 40 MHz w paśmie 2600 MHz (TDD) na 5G, zanim na początku ubiegłego roku częstotliwości średniego pasma stały się dostępne. Przed uruchomieniem pasma 3,5 GHz, gdy pozostali operatorzy byli nadal w pełni zależni od DSS w zakresie zasięgu 5G, średnia prędkość pobierania 5G Plusa wynosząca 133,34 Mb/s była aż o 77% wyższa niż w T-Mobile, 81% wyższa niż w Orange i 92% wyższa niż w Play.

Intensywne wdrażanie średniego pasma podnosi regionalną konkurencyjność Polski w zakresie 5G i zmienia dynamikę operatorów

Polscy operatorzy w rekordowym czasie przechodzą od zakupu częstotliwości w średnim paśmie do masowego wdrożenia komercyjnego

Stłumiony popyt na częstotliwości średniego pasma w Polsce był widoczny, gdy operatorzy komórkowi, tacy jak Orange, T-Mobile i Play, uruchomili usługi komercyjne zaledwie trzy miesiące po nabyciu częstotliwości średniego pasma, szybko przechodząc od aukcji w październiku 2023 r. do komercyjnego uruchomienia do stycznia 2024 roku. T-Mobile poinformował, że jego średniopasmowa sieć 5G obejmowała już ponad 25% populacji Polski do kwietnia 2024 r., z ponad 2100 aktywnymi stacjami bazowymi, podczas gdy Orange ogłosił, że osiągnął 40% zasięgu do połowy czerwca.

To tempo wdrażania jest wyjątkowe jak na standardy europejskie i wskazuje na zwiększone tempo wdrażania możliwe w późniejszym okresie cyklu technologicznego 5G. Dla porównania, hiszpańska Telefónica (Movistar) potrzebowała około sześciu miesięcy, aby osiągnąć pierwsze 1000 stacji bazowych w średnim paśmie, a niemieccy operatorzy potrzebowali około dziewięciu miesięcy, aby osiągnąć ten sam kamień milowy.

Zasoby częstotliwości Plus w paśmie 2600 MHz TDD zapewniają mu zdecydowaną przewagę przepustowości

Każdy z operatorów zabezpieczył ciągły blok częstotliwości o szerokości 100 MHz w paśmie 3,5 GHz, który jest powszechnie wykorzystywany. Jednak Plus był znacznie wolniejszy w komercjalizacji tej alokacji na dużą skalę. Wcześniejsza strategia Plusa polegająca na wdrażaniu 5G w dedykowanym paśmie 2600 MHz (zamiast polegać na DSS), a później także na wykorzystaniu pasma 2100 MHz, dała mu większą elastyczność w opóźnianiu szerokiego wdrożenia średniego pasma, ponieważ wcześniej cieszył się znaczną przewagą prędkości 5G nad konkurentami, podczas gdy byli oni nadal silnie uzależnieni od wdrożeń DSS.

Wdrożenie średniego pasma zmienia rankingi wydajności 5G wśród polskich operatorów

Masowe wdrożenie nowej warstwy pojemności przez pozostałych trzech operatorów zdecydowanie zmieniło dynamikę wydajności 5G na polskim rynku i zmniejszyło przewagę Plusa. W ciągu jednego roku, między pierwszym kwartałem 2024 r. a pierwszym kwartałem 2025 r., Plus przesunął się z lidera rynku pod względem mediany prędkości pobierania 5G do jednego z wolniejszych, stając się jedynym polskim operatorem, który odnotował spadek prędkości 5G rok do roku, o 10%, co wskazuje na rosnące ograniczenia jego strategii 2600 MHz.

Orange i T-Mobile zyskują przewagę w wydajności 5G dzięki wdrożeniu pasma średniego
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Z kolei wdrożenie średniego pasma zwiększyło wydajność na pozostałej części rynku, a mediana prędkości 5G wzrosła aż o 72% w Play, 86% w T-Mobile i 90% w Orange między 1. kwartałem 2024 r. a 1. kwartałem 2025 r. Podczas gdy Orange był liderem polskiego rynku w pierwszym kwartale ze średnią prędkością pobierania 5G wynoszącą 222,11 Mb/s, przewaga operatora znacznie się zmniejszyła wraz z postępem budowy średniego pasma T-Mobile, przy czym T-Mobile odnotowuje obecnie medianę prędkości pobierania 5G na poziomie 201,76 Mb/s, znacznie wyprzedzając odpowiednio trzeciego i czwartego Play (122,64 Mb/s) i Plusa (116,76 Mb/s).

Przewaga Plusa w spójności 5G maleje, gdy przewaga pasma 2600 MHz ustępuje wraz z wdrożeniem pasma średniego
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Pomimo utraty pozycji lidera pod względem mediany prędkości pobierania 5G, Plus nadal prowadzi w 10. percentylu (29,44 Mb/s w 1. kwartale 2025 r.), co oznacza, że abonenci w obszarach o najniższych wynikach nadal cieszą się stosunkowo lepszymi prędkościami niż abonenci konkurencyjnych sieci. Przewaga ta jest prawdopodobnie związana z mniejszą zależnością Plusa od DSS. Jednak T-Mobile (24,48 Mb/s) i Orange (21,88 Mb/s) szybko zmniejszają lukę, a ich 10-procentowe prędkości 5G zbliżają się teraz do Plusa. Spójność sieci 5G Plusa, mierzona jako odsetek próbek Speedtest spełniających minimalny próg pobierania i wysyłania 25/3 Mbps, również spadła w ciągu ostatniego roku, chociaż pozostaje liderem rynku.

Tymczasem pod względem wydajności wysyłania, sieć 5G Play była liderem na rynku w pierwszym kwartale 2025 r., odnotowując medianę prędkości 19,33 Mb/s, a następnie Orange (18,99 Mb/s), T-Mobile (17,32 Mb/s) i Plus (14,96 Mb/s).

W przeciwieństwie do znacznych wzrostów prędkości pobierania, jak dotąd istnieją ograniczone dowody na to, że wdrożenie średniego pasma znacznie poprawiło wydajność wysyłania, przy czym mediana prędkości wysyłania była o około 6% niższa w pierwszym kwartale 2025 r. w porównaniu z tym samym kwartałem ubiegłego roku. Rozbieżność ta wynika przede wszystkim z faktu, że wszyscy czterej operatorzy nadal wdrażają 5G w trybie non-standalone (NSA), nadal wymagają od urządzeń technologii 4G do obsługi ruchu wysyłania i warstwy sygnałowej. W związku z tym nowo dostępne widmo 3,5 GHz zwiększa przepustowość łącza w dół, ale pozostawia zatłoczoną ścieżkę łącza 4G w górę bez zmian.

Play zyskuje przewagę w wydajności wysyłania danych w sieci 5G
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Inwestycje operatorów we wdrażanie nowej warstwy przepustowości 5G zbiegły się w czasie z szerszymi działaniami w zakresie modernizacji sieci RAN, przekładając się na lepszą jakość usług doświadczanych przez użytkowników w kluczowych zastosowaniach, takich jak wideo streaming i przeglądanie stron internetowych. Na przykład mediana czasu ładowania strony internetowej w sieci T-Mobile poprawiła się o około 4% między 3. kwartałem 2024 r. a 1. kwartałem 2025 r., co stawia ją w czołówce pod tym względem. Tymczasem Orange był liderem pod względem wskaźników wideo, takich jak czas rozpoczęcia, rozdzielczość i nieprzerwane odtwarzanie w ostatnim kwartale.

5G napędza poprawę jakości doświadczeń (QoE) w zastosowaniach takich jak przeglądanie stron internetowych
Speedtest Intelligence® | I kwartał 2025

Inwestycje kapitałowe zwiększają zasięg 5G, ale przepaść cyfrowa między wsią a miastem w Polsce utrzymuje się

Podczas gdy inwestycje w DSS i wdrożenie średniego pasma umożliwiły polskim operatorom poczynienie znaczących postępów w zakresie dostępności 5G, która wzrosła w skali kraju z 28,5% w I kwartale 2024 r. do 43,1% w I kwartale 2025 r., regionalne różnice w zasięgu nadal są cechą charakterystyczną sieci mobilnej w Polsce.

Operatorzy nadali priorytet wdrożeniom 5G w najbogatszych i najbardziej zaludnionych częściach Polski, gdzie światłowody są mocno rozwinięte, w tym w województwach mazowieckim (Warszawa) i pomorskim (Trójmiasto). W tych województwach dostępność 5G osiągnęła ponad 40% pod koniec ubiegłego roku i przyczyniła się do osiągnięcia znacznie wyższych średnich prędkości pobierania niż średnia krajowa.

Dostępność 5G pozostaje wysoce zróżnicowana w Polsce poza obszarami zurbanizowanymi
Speedtest Intelligence® | Dostępność 5G (%) w IV kw. 2024

Natomiast województwa przygraniczne na południu i zachodzie kraju nadal doświadczają znacznie niższych poziomów dostępności 5G. Województwo lubuskie miało najniższą dostępność (23,6% na koniec ubiegłego roku), gdzie występuje mniejsza gęstość zaludnienia i niższe wydatki abonentów, co zmniejsza zachęty komercyjne operatorów do powszechnych inwestycji w 5G. Tendencja ta doprowadziła do powstania znacznej luki prędkości między województwami, a abonenci mobilni w Lubuskiem również doświadczają najniższej mediany prędkości pobierania (59,97 Mb/s) w Polsce, prawie 33% poniżej wiodącego województwa mazowieckiego.

Prędkości pobierania w sieciach mobilnych są niższe na mniej zurbanizowanych obszarach Polski
Speedtest Intelligence® | Mediana prędkości pobierania (Mbps) w IV kw. 2024

Wdrożenie średniego pasma poprawia konkurencyjność mobilną Polski, ale spójność 5G nadal ustępuje regionalnym konkurentom

Z punktu widzenia konkurencyjności regionalnej, intensywne wdrożenia średniego pasma skutecznie przełamały cykl słabej wydajności sieci mobilnej w Polsce, a mediana prędkości pobierania 5G wzrosła średnio o ponad 50% do 160,30 Mb/s między 1. kwartałem 2024 r. a 1. kwartałem 2025 r. Dzięki temu Polska po raz pierwszy wyprzedziła Czechy, Rumunię i Słowację pod względem prędkości pobierania 5G.

Wdrożenia pasma średniego napędzają regionalną konkurencyjność Polski
Speedtest Intelligence® | 2020–2025

Pomimo postępów Polski we wdrażaniu 5G w średnim paśmie, utrzymujące się skutki polegania na DSS i ograniczonej różnorodności widma 5G aż do niedawnej aukcji 700/800 MHz oznaczają, że Polska nadal pozostaje w tyle za swoimi regionalnymi rówieśnikami pod względem spójności sieci 5G. W pierwszym kwartale 2025 r. 82% próbek Speedtest w Polsce spełniło minimalny próg wydajności 5G dla spójnego doświadczenia mobilnego, w porównaniu do 86% na Węgrzech, 89% w Rumunii i 93% w Bułgarii.

Nowo pozyskana różnorodność częstotliwości 5G daje polskim operatorom potężne narzędzie do stymulowania wzrostu ARPU

Wcześniejsza zależność Polski od DSS, wynikająca z ograniczonej różnorodności widma 5G, prawdopodobnie przyczyniła się do wolniejszego wzrostu średniego przychodu na użytkownika (ARPU) w porównaniu z sąsiednimi krajami na przestrzeni ostatnich lat. Polscy operatorzy początkowo wprowadzili taryfy z “5G bez dodatkowych kosztów” dodane do istniejących pakietów 4G, utrzymując ceny na stałym poziomie w celu obrony udziału w rynku (a tym samym utrzymując obniżone poziomy ARPU w porównaniu do regionalnych konkurentów). W połączeniu z zewnętrznym szokiem makroekonomicznym wywołanym znacznie wyższymi cenami energii, stagnacja poziomów ARPU stworzyła trudne warunki operacyjne na polskim rynku i wpłynęła na rentowność operatorów.

Intensywna konkurencja cenowa spowodowała erozję przychodów w Polsce w pierwszej połowie cyklu 5G
Analiza danych GSMA Intelligence | Zmiana procentowa ARPU w usługach mobilnych (I kw. 2020 vs I kw. 2023)

Z kolei na sąsiednich rynkach operatorzy byli w stanie wykorzystać wdrożenie częstotliwości w średnim paśmie zarówno jako korzyści techniczne, jak i marketingowe, przenosząc swoje strategie z konkurencji cenowej na zróżnicowanie oparte na usługach. Pozwoliło im to skuteczniej sprzedawać wyższe poziomy prędkości lub zarabiać na konkretnych rozwiązaniach, takich jak stały dostęp bezprzewodowy (FWA), dla którego działania wdrożone 5G w średnim paśmie nadaje się idealnie.

T-Mobile i Play wyprzedziły konkurentów w tempie wzrostu udziału subskrypcji w ostatnich latach
Analiza danych rynkowych UKE | 2019–2023

Podobnie, opóźniony termin polskiej aukcji 5G dla średniego pasma prawdopodobnie osłabił czynniki po stronie podaży, będące kluczowymi dla napędzania wzrostu konsumpcji danych z sieci mobilnych. W okresie od I kwartału 2020 r. do IV kwartału 2024 r. wolumen ruchu w sąsiedniej Bułgarii po raz pierwszy zrównał się z wolumenem w Polsce, wzrastając 4,8-krotnie w porównaniu do 2,6-krotnego wzrostu w Polsce.

W międzyczasie bułgarscy operatorzy wcześnie wykorzystali dostępność widma w średnim paśmie, aby agresywnie promować konkurencyjne rozwiązania FWA (główny czynnik napędzający ruch mobilny na rynkach rozwiniętych) i wprowadzić tanie taryfy nieograniczonej transmisji danych z mniejszymi ograniczeniami użytkowania.

Polska utrzymuje regionalne prowadzenie w wolumenach danych mobilnych, ale Bułgaria szybko nadrabia
Analiza danych GSMA Intelligence | 2020–2024

Od tego czasu polscy operatorzy starali się powtórzyć sukces Bułgarii, wprowadzając odrębny marketing dla swoich wdrożeń 5G w średnim paśmie, aby odróżnić nowsze wdrożenia 5G w średnim paśmie od wcześniejszych. T-Mobile oparł się na marce “5G Bardziej”, podczas gdy Plus użył sloganu marketingowego “5G Ultra”, aby wskazać dodatkowy wzrost wydajności odblokowany przez ich nowe sieci 5G w lokalizacjach, w których wdrożono dedykowane częstotliwości średniego pasma. Strategia ta stała się częścią szerszej zmiany na rynku, w której wszyscy operatorzy odchodzą od hiper-koncentracji opierającej się na konkurencji cenowej w kierunku strategii cenowych “więcej za więcej”, wspierając poprawę rentowności i ponowny wzrost ARPU.

Polska przoduje w regionalnym wzroście ARPU od momentu rozpoczęcia wdrożeń średniego pasma 5G
Analiza danych GSMA Intelligence | Zmiana procentowa ARPU w usługach mobilnych (I kw. 2023 vs I kw. 2025)

Aktywacja niskiego pasma i postępy w budowie sieci mają na celu wzmocnienie zysków 5G w średnim paśmie

W związku z tym, że polski regulator telekomunikacyjny, UKE, ustanowił jeden z najbardziej ambitnych zobowiązań dotyczących zasięgu w Europie dla ostatnich aukcji częstotliwości średniego i niskiego pasma, operatorzy raczej nie opóźnią komercyjnych wdrożeń w nowo nabytych pasmach 700 i 800 MHz. Oczekuje się, że wdrożenia te rozpoczną się w przyszłym miesiącu i będą miały kluczowe znaczenie dla ustanowienia krajowej warstwy zasięgu 5G, która znacznie poprawi pokrycie ciężko dostępnych miejsc wewnątrz budynków w miastach i zdalnych obszarów wiejskich. Rozszerzony zasięg będzie również wspierał szersze wdrażanie usług głosowych przez LTE (VoLTE), przyspieszając schyłek 3G i uwalniając dodatkowe widmo w paśmie 900 MHz.

Wkrótce powrócimy do tego tematu, aby ocenić, jak polscy operatorzy radzą sobie z wdrażaniem nowych częstotliwości niskopasmowych i jak skutecznie uzupełniają trwający proces wygaszania 3G.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| June 11, 2025

How Spain's Mobile Networks Performed During the Iberian Grid Collapse [Visualized] | Cómo Se Comportaron Las Redes Móviles Españolas Durante El Colapso De La Red Ibérica

Spanish/Español

Variation in outage scale and duration across mobile operators during the April 28th event reinforces the case that robust power resilience is now the single most decisive factor in preserving service continuity in mobile networks

The Iberian grid collapse stands as the starkest demonstration yet of the fragility of mobile network infrastructure precisely when it is needed most. Public scrutiny following the historic event has centred on understanding and ultimately mitigating the societal vulnerabilities stemming from mobile networks’ inherent reliance on a constant grid power supply, which is increasingly difficult to guarantee as severe events become more frequent.

For the first time, and with the goal of fostering deeper understanding of the interdependence between mobile and power infrastructure in Europe, Ookla is publishing detailed data exposing the scale and geographic distribution of mobile network disruptions caused by the April 28th event. Building on our earlier analysis, this research reveals that the impact of the power outage on mobile network infrastructure varied significantly across operators, with differing levels of power backup penetration likely a critical factor shaping the severity experienced by end users.

Key Takeaways:

  • At the peak of the April 28th blackout, more than half of all mobile network users across large parts of Spain were left completely without mobile signal. The proportion of mobile network users experiencing complete service loss (unable to call, text, or use data due to sites going dark) surged from a pre-blackout baseline of under 0.5% to more than 50% across extensive areas of Spain at the peak late on April 28th. This indicates a severe, widespread, and historic collapse of the mobile site grid that deepened throughout the afternoon and evening on the day of the blackout as available power backups were progressively depleted.
  • The timing and distribution of mobile network outages closely tracked the pattern of power grid events, underlining the telecom infrastructure’s vulnerability to even brief interruptions in power supply. Within 30 minutes of the grid failure (by 13:00 CET), the proportion of users with no service surged as small cells and sites with minimal power backup and battery autonomy went offline. After two hours, about 12% of users on the most affected operator had no service. Outage growth then slowed, suggesting that remaining macro sites, likely equipped with four-to-six hour battery banks, kept operating until their reserves ran out, leading to a final sharp wave of service loss in the late evening. The restoration of mobile services tracked the geographically-phased re-energisation of the power grid, with network disruptions persisted longer into the night in parts of Andalusia and Galicia.
  • While severe network outages were observed across all Spanish operators during the blackout, mobile users on the Vodafone network were less likely to experience a complete service loss. Four-to-eight hours after the grid collapse, the interval in which every operator hit its worst point in terms of service loss, Vodafone’s subscribers were, on average, less than half as likely to be left without service as subscribers on Orange’s network and notably less likely than subscribers on Movistar or Yoigo as well.
  • Morocco’s mobile site footprint remained operational throughout April 28th since domestic grid supply was unaffected. However, the country’s reliance on Spain for international connectivity in deeper network layers resulted in cascading failures and severe service degradation. The proportion of mobile users experiencing no service on the Orange Maroc and Maroc Telecom networks remained consistent with the pre-blackout baseline on April 28th, confirming there were no sustained network disruptions at the mobile site level due to grid failure, unlike in Spain and Portugal. However, analysis of Speedtest Intelligence data reveals significant performance degradation still occurred in Morocco, with the median load time for popular websites increasing by more than 20% compared to the same day in the previous week. The quality of experience (QoE) for Orange Maroc subscribers was particularly impacted during the blackout, reportedly due to disruptions in upstream subsea connectivity between Morocco and mainland Spain.

Power Resilience and Energy Management Strategies Shape the Anatomy of Network Outages

The Iberian grid collapse exemplifies a type of stress test becoming increasingly common in Europe—the ability of mobile network infrastructure to withstand prolonged, severe external shocks beyond direct operator, ensuring continuity of service precisely when it is most critical for public safety and societal functioning.

Beyond the April 28th blackout, recent events in the UK and Ireland, where winter storms (especially Storm Éowyn) caused extensive localized damage to electricity distribution networks, and in France, where substation vandalism resulted in brief but severe blackouts in Cannes and Nice, highlight electricity supply disruptions as a principal vulnerability for mobile networks reliant entirely on grid power. These disruptions add to other external vulnerabilities faced by operators, such as terrestrial or subsea fiber connectivity, upstream cloud links, and third-party peering connections.

Power resilience, particularly through battery and generator backup systems at mobile sites, has emerged as a key proactive measure to mitigate network outages resulting from electricity grid disruptions. Simply put, backup power serves a role analogous to public health measures in a pandemic: it strategically delays the onset of outages (extending the operational hours before sites lose power) and reduces the peak severity (limiting the total number of sites simultaneously affected).

Capital investments in network hardening tools like power redundancy can therefore “flatten” the service-impact curve during an outage event in the same way public health measures flattened the infection curve during the coronavirus pandemic. Prolonged and wide-area grid disruptions like the one on April 28th, however, demonstrate that no single measure is a silver bullet and long-term power autonomy is often not economically viable across a large proportion of the site footprint. 

Recognizing this, mobile operators typically implement aggressive energy management measures during power disruptions to maximize site uptime and strategically allocate network resources based on user priority. These measures may include throttling site transmit power to reduce coverage footprints, limiting spectrum diversity to limit carrier aggregation and overall capacity, and temporarily disabling newer technologies such as 5G and Massive MIMO to extend battery and generator runtime.

Differences in the extent of power backup deployment and the strategic use of energy conservation and load-shedding measures shape the anatomy of network outages. Such variations among operators may arise from a diversity of fuel choices for backup power (e.g., batteries might offer long-term monetization potential, including opportunities for resale to the grid, but typically have shorter runtimes), network configurations (such as RAN sharing arrangements and site types, with dense urban small cells facing greater physical constraints for power backup deployments), and subscriber base characteristics (e.g., operators serving a larger rural subscriber base face more complex and costly challenges in enhancing network resilience).

Iberian Grid Collapse Cascaded through Mobile Networks in Spain, Moving in Lockstep with Power Disruptions

Analysis of Ookla® background signal scan data reveals that the April 28th event placed unprecedented stress on mobile networks in Spain, triggering a rapid collapse in site grid density. The historic scale of this collapse severely curtailed the coverage footprint of operator infrastructure, pushing a significant share of Spanish mobile subscribers into a ‘no service’ state, unable to connect to a nearby mobile site and thus temporarily unable to make calls, send texts, or use data.

Geospatial sequencing of the ‘no service’ data calculates the average probability that a mobile network user was left without signal during any given time window and serves as a proxy for the overall proportion of subscribers left with no network access. This methodology illustrates that the impact of the power blackout quickly cascaded through Spain’s mobile networks (closely mirroring the infection curve analogy described earlier):

  • Baseline (Pre-Blackout): Mobile sites were operating as normal. The average proportion of subscribers without service was less than 0.5%, reflecting the very high levels of network availability typical of Spain.
  • Initial Impact (Immediate Aftermath of Blackout): The grid collapsed at ~12:33 CET across the Iberian Peninsula, triggering rectifiers or uninterruptible power supply (UPS) devices at mobile sites to switch over to backup batteries or generators (where these were installed and adequately charged or fueled).

    Within 30 minutes of the voltage drop, the proportion of subscribers without service had climbed well above the pre-event baseline across Spain and the outage curve entered a phase of runaway growth. This limited initial outage impact likely reflected the immediate loss of a small portion of the overall site footprint in areas where power backup was either absent or severely limited in capacity—most commonly at small cell sites in dense urban environments, where physical space restricts battery or generator installations, or at remote rural sites lacking redundancy (or featuring generators that took longer to switch over and come online).

    Notably, the balanced geographical spread of subscribers beginning to experience no service on their devices (i.e. losing network access) at the start of the network outages suggests that the timing of impacts was broadly consistent across Spain, affecting both rural and urban regions. However, the initial severity was more pronounced in areas along the east and south coasts, as well as in the interior of the country, potentially indicating a lower level of power autonomy at sites in these areas.
  • Ramp-Up (2-8 Hours After Blackout): Within two hours of the blackout, the most affected operator had already seen ~12% of users left with no service. After this point, the rate of outage growth slowed temporarily for several hours. This pattern suggests that the power backup profile of Spanish mobile sites was bi- or tri-modal, with a tiered approach to backup capacity employed by operators (i.e., site autonomy was clustered into configurations like two, four or six-hour power resilience, with battery discharge rates determined by amp-hour capacity and site load at each location).

    As a result of this tiered approach to power autonomy and site load variability, a portion of sites continued operating, likely in a reduced state with aggressive energy conservation measures in place (reflected in marked performance degradation observed in Speedtest Intelligence® data), throughout the afternoon and evening of April 28th.

    The eventual depletion of larger power reserves, typically found at major macro sites on lattice or monopole towers, triggered a final sharp wave of network outages four to eight hours after the blackout began. The loss of these wide-area ‘umbrella’ sites in the evening resulted in a substantial share of Spanish mobile subscribers experiencing no service by 21:00 CET, with severe network outages geographically distributed across all of Spain.
  • Peak (8-10 Hours After Blackout): The impact of the blackout on mobile network infrastructure in Spain peaked between 21:00 and 22:00 CET, with more than half of all mobile subscribers left without service across many regions by late evening, just before power began to return. By this stage (about ten hours after the initial power loss), even the most capable battery backups were likely exhausted, leaving only those sites powered by mobile or stationary generators still operational (especially where strategic fuel deliveries could extend uptime). 
  • Recovery (Remainder of April 28th and 29th): Cross-analysis of geospatial sequencing of the no service data with nighttime light emissions detailed in NASA satellite imagery reveals that the recovery of mobile services and the site grid footprint in Spain closely tracked the pattern of grid re-energization. The proportion of users without service began to decline in the mid-afternoon and early evening in the areas where power was first restored, as the grid operator carried out a phased nationwide black-start. This early network recovery was most evident in regions such as the Basque Country, Catalonia, and Castile and León.

    Significant network outages continued into the night in parts of Andalusia and Galicia, meanwhile, mirroring the slower pace of power restoration in these regions. In some parts of Andalusia, for example, more than half of subscribers remained without service by 6:00 a.m. the following morning, only regaining connectivity once power was restored shortly afterwards. The direct relationship between the timing of power restoration and mobile network recovery highlights that operators are wholly dependent on the grid for service continuity once backup systems are inevitably depleted.

Breadth and Depth of Power Autonomy Drives Differences in Network Resilience Outcomes 

The infection curve analogy provides a potent mechanism to visualize and compare network outage profiles and site resilience among Spain’s mobile operators during the blackout. The shape of these outage curves transforms the ‘no service’ data into a story about both network topology and the breadth and depth of power backup deployed across different operators.

In the context of the outage curves, the point where each curve rises from the baseline reflects the level of power autonomy or battery/generator depth. The height of the peak shows how evenly that autonomy is distributed across the site footprint, while the length of the tail can reveal the geographical skew of subscribers within each operator’s network.

On April 28th, Vodafone exhibited the earliest and lowest outage peak in Spain. The probability that a subscriber on its network was left without service peaked at about half that of Orange and notably below other operators. This early yet suppressed peak indicates a thin but widely deployed power autonomy layer in its network, with small cells (featuring short UPS reserves) dropping out quickly, while most large macro sites carrying modest batteries or generators with different configurations likely kept at least one carrier alive for several hours. This approach of spreading shallow reserves across most sites flattened Vodafone’s outage peak but also pulled it forward in time.

While Orange’s outage curve did not reach its peak until several hours after Vodafone, it is indicative of a strategy that concentrated on thick battery or generator backup at key sites but left a broad swath of sites vulnerable to synchronized collapse (as reflected in the sharp no service spikes), the higher peak suggests a larger share of its subscriber base was likely left with no service during the blackout.

Movistar’s outage profile fell between Vodafone and Orange in both the timing and height of its peak during the blackout, but the recovery of its site footprint was significantly more protracted—taking nearly twice as long (almost a day and a half) as the other operators for the proportion of subscribers with no service to drop below 2%. This is likely an artifact of the unique scale of its rural site and subscriber footprint in Spain, where power backup is often more reliant on generators that require manual intervention and are more limited in deployment due to the economic challenges posed by installation in remote areas. 

Network Resilience is about more than Power Redundancy

While the Iberian blackout may have been a black swan event, the wider global trend of escalating climate, energy, and security-driven shocks impacting multiple layers of telecom infrastructure—often beyond the direct control of mobile operators—has elevated network resilience from a secondary consideration to a core design principle. This shift is reflected in more robust policy oversight (as exemplified in countries like Norway and Finland) and is likely to be underpinned by fiscal subsidies that seek to support the deployment of more power resilience solutions at mobile sites.

Network resilience is, however, more than keeping the lights on; it also depends on other important factors like having diverse, independent paths to the wider internet. On the day of the blackout, Moroccan operators that funnel most of their international traffic through Spanish landing stations lost those paths when the grid collapse knocked Spanish routers and data centers offline.

Since the subsea capacity and routing of some Moroccan operators was dependent on a highly concentrated upstream Spain-centered corridor, there was limited immediate fail-over and users experienced sharp service degradation, even though power and equipment inside Morocco never went down. By contrast, operators that had additional fibers to France or Italy suffered more minor disruptions, highlighting how geographic and upstream diversity are just as critical to mobile network resilience as local power autonomy.


Cómo Se Comportaron Las Redes Móviles Españolas Durante El Colapso De La Red Ibérica

La variación en la escala y duración de las interrupciones entre los operadores de telefonía móvil durante el evento del 28 de abril refuerza la idea de que una sólida capacidad de recuperación energética es ahora el factor más decisivo para garantizar la continuidad del servicio en las redes móviles.

El colapso de la red ibérica es la demostración más clara de la fragilidad de la infraestructura de las redes móviles precisamente cuando más se necesita. El debate público tras el histórico suceso se ha centrado en comprender y, en última instancia, mitigar las vulnerabilidades sociales derivadas de la dependencia inherente de las redes móviles de un suministro constante de energía de la red, que es cada vez más difícil de garantizar a medida que los incidentes graves se hacen más frecuentes.

Por primera vez, y con el objetivo de fomentar una comprensión más profunda de la interdependencia entre la infraestructura móvil y la eléctrica en Europa, Ookla publica datos detallados que muestran la escala y la distribución geográfica de las interrupciones de la red móvil causadas por el apagón del 28 de abril. Sobre la base de nuestro análisis anterior, esta investigación revela que el impacto del corte de energía en la infraestructura de red móvil varió significativamente entre los operadores, y que los diferentes niveles de penetración de la energía de respaldo son probablemente un factor crítico que determina la gravedad que experimentan los usuarios finales.

Principales Conclusiones:

  • En el punto álgido del apagón del 28 de abril, más de la mitad de los usuarios de redes móviles de amplias zonas de España se quedaron completamente sin señal móvil. La proporción de usuarios de redes móviles que experimentaron una pérdida completa del servicio (sin poder llamar, enviar mensajes de texto o utilizar datos debido a que los sitios se habían quedado sin señal) pasó de un valor de referencia previo al apagón inferior al 0,5% a más del 50% en amplias zonas de España en el punto álgido del 28 de abril. Esto indica un colapso grave, generalizado e histórico de la red de telefonía móvil que se agravó durante la tarde y la noche del día del apagón a medida que se agotaban progresivamente las reservas de energía disponibles.
  • El momento y la distribución de los cortes de la red móvil siguieron el patrón de los incidentes de la red eléctrica, lo que evidencia la vulnerabilidad de la infraestructura de telecomunicaciones a las interrupciones, incluso breves, del suministro eléctrico. En los 30 minutos siguientes al fallo de la red (a las 13:00 CET), la proporción de usuarios sin servicio aumentó a medida que se desconectaban las células pequeñas y los emplazamientos con un mínimo de reserva de energía y autonomía de batería. Al cabo de dos horas, alrededor del 12% de los usuarios del operador más afectado carecían de servicio. El aumento de los cortes se ralentizó a continuación, lo que sugiere que los macroemplazamientos restantes, probablemente equipados con bancos de baterías de cuatro a seis horas de autonomía, siguieron funcionando hasta que se agotaron sus reservas, lo que provocó una última y brusca oleada de pérdidas de servicio a última hora de la tarde. El restablecimiento de los servicios móviles siguió el ritmo de la reenergización geográficamente escalonada de la red eléctrica, con interrupciones de la red que se prolongaron hasta bien entrada la noche en partes de Andalucía y Galicia. 
  • Aunque durante el apagón se observaron graves cortes de red en todos los operadores españoles, los usuarios de telefonía móvil de la red de Vodafone tuvieron menos probabilidades de sufrir una pérdida completa del servicio. Entre cuatro y ocho horas después del colapso de la red, el intervalo en el que cada operador alcanzó su peor punto en términos de pérdida de servicio, los abonados de Vodafone tuvieron, de media, menos de la mitad de probabilidades de quedarse sin servicio que los abonados de la red de Orange y notablemente menos probabilidades también que los abonados de Movistar o Yoigo.
  • La red de telefonía móvil de Marruecos permaneció operativa durante todo el 28 de abril, ya que el suministro de la red nacional no se vio afectado. Sin embargo, la dependencia del país de España para la conectividad internacional en capas más profundas de la red provocó fallos en cascada y una grave degradación del servicio. La proporción de usuarios de telefonía móvil sin servicio en las redes de Orange Maroc y Maroc Telecom se mantuvo el 28 de abril en el mismo nivel que antes del apagón, lo que confirma que no se produjeron interrupciones sostenidas de la red en los emplazamientos de telefonía móvil debido a fallos de la red, a diferencia de lo ocurrido en España y Portugal. Sin embargo, el análisis de los datos de Speedtest Intelligence revela que en Marruecos se siguió produciendo una degradación significativa del rendimiento, con un aumento de más del 20% en el tiempo medio de carga de los sitios web más populares en comparación con el mismo día de la semana anterior. La calidad de la experiencia (QoE) de los abonados de Orange Maroc se vio especialmente afectada durante el apagón, al parecer debido a interrupciones en la conectividad submarina ascendente entre Marruecos y España continental.

La resiliencia eléctrica y las estrategias de gestión de la energía determinan la anatomía de los cortes de red

El colapso de la red ibérica ejemplifica un tipo de prueba de resistencia cada vez más habitual en Europa: la capacidad de la infraestructura de redes móviles para resistir perturbaciones externas graves y prolongadas más allá del operador directo, garantizando la continuidad del servicio, precisamente cuando es más crítico para la seguridad pública y el funcionamiento de la sociedad.

Más allá del apagón del 28 de abril, los recientes sucesos en el Reino Unido e Irlanda, donde las tormentas invernales (especialmente la tormenta Éowyn) causaron grandes daños localizados en las redes de distribución eléctrica, y en Francia, donde el vandalismo en subestaciones provocó breves pero graves apagones en Cannes y Niza, ponen de manifiesto que las interrupciones del suministro eléctrico son una de las principales vulnerabilidades de las redes móviles que dependen totalmente de la red eléctrica. Estas interrupciones se suman a otras vulnerabilidades externas a las que se enfrentan los operadores, como la conectividad de fibra terrestre o submarina, los enlaces ascendentes en la nube y las conexiones igualitarias de terceros.

La resiliencia energética, en particular mediante sistemas de baterías y generadores de reserva en los emplazamientos móviles, ha surgido como una medida proactiva clave para mitigar los cortes de red derivados de las interrupciones de la red eléctrica. En pocas palabras, la energía de reserva desempeña un papel análogo al de las medidas de salud pública en una pandemia: retrasa estratégicamente el inicio de los cortes (ampliando las horas operativas antes de que los sites se queden sin energía) y reduce la gravedad máxima (limitando el número total de sitios afectados simultáneamente).

Por tanto, las inversiones de capital en herramientas de refuerzo de la red, como la redundancia de energía, pueden “aplanar” la curva de impacto del servicio durante un apagón, del mismo modo que las medidas de salud pública aplanaron la curva de infección durante la pandemia de coronavirus. Sin embargo, las interrupciones prolongadas y generalizadas de la red, como la del 28 de abril, demuestran que ninguna medida por sí sola es la panacea y que la autonomía energética a largo plazo no suele ser económicamente viable en una gran proporción de la huella del emplazamiento. 

Conscientes de ello, los operadores de telefonía móvil suelen aplicar medidas agresivas de gestión de la energía durante las interrupciones del suministro para maximizar el tiempo de actividad de los emplazamientos y asignar estratégicamente los recursos de red en función de la prioridad de los usuarios. Estas medidas pueden incluir el estrangulamiento de la potencia de transmisión del emplazamiento para reducir las huellas de cobertura, la limitación de la diversidad del espectro para limitar la agregación de portadoras y la capacidad global, y la desactivación temporal de tecnologías más nuevas como 5G y Massive MIMO para ampliar el tiempo de funcionamiento de la batería y el generador.

Las diferencias en el alcance del despliegue de respaldo de energía y el uso estratégico de medidas de conservación de la energía y reducción de la carga conforman la anatomía de los cortes de red. Estas variaciones entre operadores pueden deberse a la diversidad de combustibles elegidos para la energía de reserva (por ejemplo, las baterías pueden ofrecer un potencial de monetización a largo plazo, incluidas las oportunidades de reventa a la red, pero suelen tener tiempos de funcionamiento más cortos), configuraciones de red (como los acuerdos de compartición de RAN y los tipos de emplazamientos, con pequeñas células urbanas densas que se enfrentan a mayores limitaciones físicas para los despliegues de energía de reserva) y características de la base de abonados (por ejemplo, los operadores que atienden a una base de abonados rurales más grande se enfrentan a retos más complejos y costosos para mejorar la resiliencia de la red).

El colapso de la red ibérica se propagó en cascada a través de las redes móviles en España, moviéndose al unísono con las interrupciones del suministro eléctrico

El análisis de los datos de escaneo de señales de fondo de Ookla® revela que el incidente del 28 de abril provocó una tensión sin precedentes en las redes móviles de España, desencadenando un rápido colapso en la densidad de la red. La escala histórica de este colapso redujo gravemente la huella de cobertura de la infraestructura del operador, empujando a una parte significativa de los abonados móviles españoles a un estado de “sin servicio”, incapaces de conectarse a un sitio móvil cercano y, por tanto, temporalmente incapaces de hacer llamadas, enviar mensajes de texto o utilizar datos. 

La secuenciación geoespacial de los datos de “sin servicio” calcula la probabilidad media de que un usuario de red móvil se quedara sin señal durante una ventana temporal determinada y sirve como indicador de la proporción global de abonados que se quedan sin acceso a la red. Esta metodología ilustra que el impacto del apagón se propagó rápidamente en cascada por las redes móviles españolas (reflejando fielmente la analogía de la curva de infección descrita anteriormente):

  • Línea de base (antes del apagón). Los sitios móviles funcionaban con normalidad. La proporción media de abonados sin servicio era inferior al 0,5%, lo que refleja los altísimos niveles de disponibilidad de red típicos de España.
  • Impacto inicial (inmediatamente después del apagón). La red se colapsó en torno a las 12:33 CET en toda la Península Ibérica, lo que provocó que los rectificadores o los dispositivos de alimentación ininterrumpida (SAI) de las ubicaciones móviles pasaran a utilizar baterías o generadores de reserva (cuando éstos estaban instalados y adecuadamente cargados o alimentados). 

    A los 30 minutos de la caída de tensión, la proporción de abonados sin servicio había superado con creces la línea de base anterior al incidente en toda España y la curva de cortes entró en una fase de crecimiento descontrolado. Es probable que este impacto inicial limitado de los cortes reflejara la pérdida inmediata de una pequeña parte de la huella total del emplazamiento en zonas en las que no había suministro eléctrico de reserva o su capacidad era muy limitada, normalmente en emplazamientos de células pequeñas en entornos urbanos densos, donde el espacio físico restringe la instalación de baterías o generadores, o en emplazamientos rurales remotos sin redundancia (o con generadores que tardaron más en conectarse).

    Cabe destacar que la distribución geográfica equilibrada de los abonados que empezaron a quedarse sin servicio en sus dispositivos (es decir, a perder el acceso a la red) al inicio de los cortes de red sugiere que el momento de los impactos fue en general coherente en toda España, afectando tanto a regiones rurales como urbanas. Sin embargo, la gravedad inicial fue más pronunciada en las zonas situadas a lo largo de las costas este y sur, así como en el interior del país, lo que podría indicar un menor nivel de autonomía eléctrica en los emplazamientos de estas zonas. 
  • Recuperación (2-8 horas después del apagón). A las dos horas del apagón, el operador más afectado ya había visto cómo en torno al 12% de los usuarios se quedaban sin servicio. A partir de ese momento, el ritmo de crecimiento de los cortes disminuyó temporalmente durante varias horas. Este patrón sugiere que el perfil de reserva de energía de los sitios móviles españoles era bimodal o trimodal, con un enfoque escalonado de la capacidad de reserva empleada por los operadores (es decir, la autonomía de los sitios se agrupaba en configuraciones como resiliencia de energía de dos, cuatro o seis horas, con tasas de descarga de la batería determinadas por la capacidad de amperios-hora y la carga del sitio en cada ubicación).

    Como resultado de este enfoque escalonado de la autonomía energética y de la variabilidad de la carga del emplazamiento, una parte de los emplazamientos siguieron funcionando, probablemente en un estado reducido con medidas agresivas de conservación de la energía (reflejadas en la marcada degradación del rendimiento observada en los datos de Speedtest Intelligence®), durante toda la tarde y noche del 28 de abril. 

    El agotamiento final de las grandes reservas de energía, que suelen encontrarse en los principales macro-emplazamientos situados en torres de celosía o monoposte, desencadenó una última oleada de cortes de red entre cuatro y ocho horas después del inicio del apagón. La pérdida de estos emplazamientos “paraguas” de área amplia por la noche provocó que una parte sustancial de los abonados móviles españoles se quedaran sin servicio a las 21:00 CET, con graves cortes de red distribuidos geográficamente por toda España.
  • Pico (8-10 horas después del apagón). El impacto del apagón en la infraestructura de la red móvil en España alcanzó su punto álgido entre las 21:00 y las 22:00 CET, con más de la mitad de todos los abonados móviles sin servicio en muchas regiones a última hora de la tarde, justo antes de que empezara a volver la electricidad. Para entonces (unas diez horas después de la pérdida inicial de energía), incluso las baterías de reserva más potentes estaban probablemente agotadas, por lo que sólo quedaban operativas las instalaciones alimentadas por generadores móviles o fijos (especialmente en los casos en que el suministro estratégico de combustible podía prolongar el tiempo de actividad).

  • Recuperación (resto de los días 28 y 29 de abril). El análisis cruzado de la secuencia geoespacial de los datos de ausencia de servicio con las emisiones de luz nocturnas detalladas en las imágenes de satélite de la NASA revela que la recuperación de los servicios móviles y la huella de la red de los emplazamientos en España siguieron de cerca el patrón de reenergización de la red. La proporción de usuarios sin servicio empezó a disminuir a media tarde y a primera hora de la noche en las zonas donde primero se restableció el suministro eléctrico, a medida que el operador de la red realizaba un arranque en negro por fases en todo el país. Esta recuperación temprana de la red fue más evidente en regiones como el País Vasco, Cataluña y Castilla y León.

    Mientras tanto, en algunas zonas de Andalucía y Galicia los cortes de red continuaron durante la noche, reflejando el ritmo más lento del restablecimiento del suministro eléctrico en estas regiones. En algunas zonas de Andalucía, por ejemplo, más de la mitad de los abonados seguían sin servicio a las 6 de la mañana del día siguiente, y sólo recuperaron la conectividad cuando se restableció el suministro poco después. La relación directa entre el momento del restablecimiento del suministro eléctrico y la recuperación de la red móvil pone de manifiesto que los operadores dependen totalmente de la red para la continuidad del servicio una vez que los sistemas de reserva se agotan inevitablemente.

La amplitud y la profundidad de la autonomía eléctrica determinan las diferencias en los resultados de la recuperación de la red 

La analogía de la curva de infección proporciona un potente mecanismo para visualizar y comparar los perfiles de interrupción de la red y la capacidad de recuperación de los emplazamientos entre los operadores móviles españoles durante el apagón. La forma de estas curvas de cortes transforma los datos de “ausencia de servicio” en una historia sobre la topología de la red y la amplitud y profundidad de la reserva de energía desplegada por los distintos operadores.

En el contexto de las curvas de interrupciones, el punto en el que cada curva se eleva desde la línea de base refleja el nivel de autonomía eléctrica o la profundidad de la batería/generador. La altura del pico muestra hasta qué punto la autonomía se distribuye uniformemente a través de la huella del sitio, mientras que la longitud de la cola puede revelar el sesgo geográfico de los abonados dentro de la red de cada operador.

El 28 de abril, Vodafone exhibió el pico de cortes más temprano y más bajo de España. La probabilidad de que un abonado de su red se quedara sin servicio alcanzó un máximo de aproximadamente la mitad que el de Orange y notablemente por debajo de otros operadores. Este pico, temprano pero suprimido, indica una capa de autonomía energética delgada pero ampliamente desplegada en su red, con células pequeñas (que cuentan con reservas cortas de SAI) que se quedan sin servicio rápidamente, mientras que la mayoría de los grandes macroemplazamientos que llevan baterías modestas o generadores con diferentes configuraciones probablemente mantuvieron vivo al menos a un operador durante varias horas. Este planteamiento de repartir reservas poco profundas entre la mayoría de los emplazamientos aplanó el pico de cortes de Vodafone, pero también lo adelantó en el tiempo.

Aunque la curva de cortes de Orange no alcanzó su pico hasta varias horas después que la de Vodafone, es indicativa de una estrategia que se concentró en una reserva de baterías o generadores de gran capacidad en los emplazamientos clave, pero que dejó una amplia franja de emplazamientos vulnerables al colapso sincronizado (como reflejan los fuertes picos sin servicio), el pico más alto sugiere que una mayor parte de su base de abonados probablemente se quedó sin servicio durante el apagón.

El perfil de interrupción de Movistar se situó entre el de Vodafone y Orange tanto en el momento como en la altura de su pico durante el apagón, pero la recuperación de su huella de sitios fue significativamente más prolongada, tardando casi el doble de tiempo (casi un día y medio) que los otros operadores para que la proporción de abonados sin servicio cayera por debajo del 2%. Es probable que esto se deba a la escala única de su presencia rural y de abonados en España, donde la energía de reserva suele depender más de generadores que requieren intervención manual y cuyo despliegue es más limitado debido a las dificultades económicas que plantea la instalación en zonas remotas.

La resiliencia de la red va más allá de la redundancia energética

Si bien el apagón en la Península Ibérica pudo haber sido un evento inesperado, la creciente tendencia global de crisis climáticas, energéticas y de seguridad que impactan múltiples capas de la infraestructura de telecomunicaciones —a menudo fuera del control directo de los operadores móviles— ha elevado la resiliencia de la red de una consideración secundaria a un principio de diseño fundamental. Este cambio se refleja en una supervisión política más exhaustiva (como se ejemplifica en países como Noruega y Finlandia) y es probable que se sustente en subsidios fiscales que buscan apoyar el despliegue de más soluciones de resiliencia energética en las estaciones móviles.

La resiliencia de la red, sin embargo, va más allá de mantener las luces encendidas; también depende de otros factores importantes, como contar con rutas diversas e independientes hacia una internet más amplia. El día del apagón, los operadores marroquíes que canalizan la mayor parte de su tráfico internacional a través de estaciones de aterrizaje españolas perdieron esas rutas cuando el colapso de la red dejó fuera de servicio a los routers y centros de datos españoles.

Dado que la capacidad submarina y el enrutamiento de algunos operadores marroquíes dependían de un corredor de aguas arriba altamente concentrado y centrado en España, la conmutación por error inmediata fue limitada y los usuarios experimentaron una fuerte degradación del servicio, a pesar de que el suministro eléctrico y los equipos dentro de Marruecos nunca se interrumpieron. Por el contrario, los operadores que contaban con fibra adicional con Francia o Italia sufrieron interrupciones menores, lo que pone de manifiesto cómo la diversidad geográfica y de aguas arriba es tan crucial para la resiliencia de la red móvil como la disponibilidad de energía local.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| December 9, 2024

UK Telecoms at a Crossroads: Consolidation, Convergence, and Looking Ahead to 2025

After years of decline in international rankings, can the UK’s largest telecoms merger in decades revive competition in network quality?

In this special year-end article, we examine the past year in UK telecoms, assessing the country’s global competitiveness, evaluating 5G SA rollouts and monetisation strategies, highlighting the growing trend of convergence and looking ahead to what the market may bring in 2025.

The State of the UK’s Mobile Networks

The UK continued to trail its developed peers in mobile performance in 2024

Reports of mobile not-spots, outages and peak-time congestion dominated discussions around the UK’s mobile networks this year, with high-profile publications highlighting their underperformance compared to developed peers elsewhere in Europe and North America. Particular attention has been drawn to indoor coverage deficits—where over 80% of mobile traffic originates today—and lingering blackspots along key rail corridors nationwide.

Consumer research published by Ookla earlier this year, based on a survey of over 2,000 smartphone users in the UK and US, revealed significantly higher dissatisfaction among UK mobile users. Quality of experience (QoE) issues, such as slow-loading web pages (37%) and interrupted video streams (19%), were prominent, with over a quarter of UK respondents also reporting service interruptions or outages at least once a month. These experiences are likely driving a higher propensity to churn, with 27% of users planning to switch operators within the next twelve months citing coverage as their primary reason. 

Analysis of Speedtest Intelligence® data underscores UK consumers’ concerns, revealing the country’s stark international underperformance. Over the past eight years, the UK has shifted from being a G7 leader to a laggard in mobile download speeds at the 10th percentile—a key measure of baseline network performance, as it reflects the experience of users with the slowest connections. These speeds are now lower in the UK than in all but one other G7 country (Japan), with the gap to the leader (France) now widening rapidly on a year-on-year basis.

Outside the G7, the UK recorded the lowest Consistency score in Europe (82.56%) during Q2-Q3 2024, ahead of only Ireland. This metric reflects the percentage of consumer-initiated Speedtest samples meeting minimum speed thresholds: 5 Mbps download and 1 Mbps upload on 4G, and 25 Mbps download and 3 Mbps upload on 5G. Market-wide Consistency in the UK saw only slight increases over the year, primarily driven by improvements in the performance of 4G networks. 

Investments in RAN upgrades and site expansion are driving progress in coverage and QoE moving into 2025

Notwithstanding the challenges, there is evidence that the performance of the UK’s mobile networks improved notably during the year, as reflected in other key indicators. Speedtest Intelligence data revealed a reduction in market-wide latency to 51.83 ms, reflecting progress across three of the four operators. Moreover, the observed quality of experience for bread-and-butter activities such as gaming and video streaming moved in the right direction again after a decline last year.

Significant investments in RAN upgrades and site expansions, bolstered in part by the government’s 4G-focused Shared Rural Network (SRN) initiative, contributed to substantial improvements in network coverage across all operators over the year. Overall 5G Availability in the UK rose by nearly 10 percentage points to 36.25% between 2023 and 2024, while 4G Availability increased from 93.8% to 95.7% during the same period. 

Ofcom noted, however, that there remains a substantial rural-urban divide in terms of 5G deployment progress in the UK, with 5G deployed on 42% of sites in urban areas, compared with just 16% of sites in rural areas, at the end of 2024.

Progress in the 3G sunset underlines the importance of supporting new measures to improve indoor connectivity outcomes

The shutdown of 3G networks, which reportedly accounted for less than 1% of traffic but over a quarter of operators’ RAN electricity consumption in some cases, has played an important role in freeing up spectrum for 4G and 5G. EE, for instance, has expanded its refarmed 2100 MHz spectrum deployments (n1) for 5G, increasing channel bandwidth from 15 MHz to 20 MHz during the year.

Speedtest Intelligence data reveals a decrease in overall 3G General Availability in the UK from 3.43% last year to 1.60% in 2024, indicating the percentage of users falling back to and mainly using 3G networks more than halved in the period. A potential consequence of the 3G sunset, however, is an increased reliance on 2G networks, particularly in deep indoor environments—the percentage of overall users that spend the majority of their time on 2G increased from 0.37% in 2023 to 0.76% this year.

By the end of 2025, all four of the UK’s mobile operators are expected to have completed their 3G sunsets. Reducing the propensity to fall back to 2G and enhancing the handover experience to 4G and 5G networks are likely to remain key priorities for operators’ RAN strategies. Progress in enhancing the indoor mobile network experience in the UK, enabled by deployment models such as Boldyn Networks’ small cell rollout on the London Underground and new in-building neutral host solutions from companies like Freshwave and Proptivity, will be key and may benefit from policy support.

Merger approval transforms spectrum landscape and provides certainty moving into 2025

The successful approval of the merger between Three and Vodafone by the Competition and Markets Authority (CMA) brings much-needed certainty to the market heading into 2025. This decision is expected to encourage long-term commitments to capital spending on network upgrades across all operators in the UK market, not just required by the merged entity for integrating its networks and complying with the CMA’s behavioural remedies. With the consolidation and redistribution of spectrum benefiting both the merged entity and Virgin Media O2 (VMO2), two of the three in-market operators will have more headroom to expand network capacity where needed.

Research published by Ookla earlier this year examined the impact of operator consolidation on network quality outcomes across Europe and a sample of other high-income countries. It found that a three-player market structure—now set to define the UK market following the merger—tends to be associated with higher median download speeds, improved network consistency and more positive consumer sentiment in the markets where it is present over time. 

The UK leads Europe in the commercialisation of 5G SA

While the UK lags behind its developed peers in mobile network performance, it has emerged as a global leader in the commercial rollout of the standalone (SA) 5G architecture. It remains the only European country with three commercially available 5G SA networks at the end of 2024, as VMO2 and EE joined Vodafone this year in launching the technology, primarily targeting dense urban areas in cities and towns. Ofcom reported that there were 3,300 5G SA-capable sites by the end of 2024, representing 15% of all reported 5G sites and carrying 3% of the UK’s overall monthly mobile traffic.

Controlled network testing by RootMetrics®, an Ookla company, on EE’s 5G network in Birmingham in October confirmed the significant latency improvements unlocked by the SA architecture. With 115 MHz of channel bandwidth observed across much of EE’s SA deployments along the test route, the operator stands out as the closest European equivalent to T-Mobile in the US which, like EE, has distinguished itself through extensive SA spectrum allocation spanning multiple carriers from low-band to mid- and high-bands.

In addition to upgrading traditional rooftop and monopole sites for 5G SA, operators like VMO2 are deploying street-level 5G SA small cells in increasing numbers to boost network capacity in high-footfall areas. This approach to network densification is expected to accelerate next year as macro site grid upgrades mature and operators collaborate with local authorities to streamline deployment processes for street-level mobile infrastructure. 

Stimulating consumer demand for 5G SA proves a challenge, with bundling emerging as a key sales strategy

On a business level, each operator has adopted a distinct strategy to market 5G SA in the UK, highlighting the persistent challenges of monetising 5G investments as far as mid-way through the technology cycle. Vodafone led the charge with a consumer-focused launch in 2023, branding its SA service as ‘5G Ultra’. In an effort to upsell its base, the offering was limited to postpay subscribers, with ‘improved phone battery life’ promoted as a key selling point.

In contrast, VMO2 launched its 5G SA network this year, following the playbook of operators like Iliad’s Free in the French market, by offering access to its existing subscribers at no additional cost. While the operator touted improvements in latency and uplink performance unlocked by the new 5G SA core and enhanced carrier aggregation, the aggressive pricing strategy reinforces the increasing industry consensus in Europe that consumers are unwilling to pay a premium for 5G SA alone.

Recognising this challenge in marketing the technology as a worthy consumer upgrade from the NSA architecture, and aligning with its strategy to transition from a traditional telecoms operator to a dynamic, service-led household brand, EE has taken a more ambitious approach. The operator has bundled its 5G SA offerings, restricted to its most expensive tariffs, with content packages, securing a partnership with Google to provide access to its premium Gemini Advanced AI model as part of the deal.

Bundling has proven effective for upselling in other advanced markets, particularly in Asia, where operators have successfully boosted ARPU by introducing differentiated services early in the 5G cycle. In addition to bundling Google’s AI services, EE introduced a ‘Network Boost’ subscription add-on with its 5G SA launch, offering premium subscribers the option to pay for prioritised network access during times of congestion.

This bundling strategy is expected to expand further in the UK next year, aligning with converged fixed and mobile offerings from operators like BT and VMO2. As the rollout of 5G SA matures and is afforded greater strategic priority under the government’s Wireless Infrastructure Strategy (WIS), and the device and solution ecosystem continues to mature, operators are likely to shift their focus to the enterprise segment—arguably the only market where SA-specific features, such as network slicing, hold any substantive monetisation potential.

The State of the UK’s Fixed Broadband Networks

Fibre land grab boosts the UK’s international ranking in fixed broadband performance

The recent groundswell of investment in fibre infrastructure across the UK is paying off, with median download speeds on fixed networks increasing by nearly 40% between 2023 and 2024 to 107.07 Mbps, according to Speedtest Intelligence data. This improvement trend also extended to other key metrics, including a 6% reduction in latency to 20.47 ms and enhanced QoE for gaming and video streaming across major ISPs. Ofcom reported that FTTH reached nearly 7 in 10 homes at the end of 2024, putting the UK on track to reach the government’s target of 85% full-fibre coverage by the end of 2025.

UK leads Germany and Italy in Fixed Download Speeds, but Trails G7 Leaders
Source: Speedtest Intelligence® | 2018 – 2024
Spline plot comparison of median fixed download speeds among the G7 countries between 2018 and 2024 based on Speedtest Intelligence® data.

Notably, in the context of Ookla’s Speedtest Global Index™, the UK continues to rank relatively higher in fixed network performance compared to mobile performance. The significant gains in median fixed download, upload and latency performance over the last year have propelled the UK up twelve places in the index, positioning it ahead of other G7 countries like Germany and Italy. However, it remains in the lower half of Western European countries. 

Wi-Fi 7 poised to become the default standard for ISPs targeting premium experiences in 2025

The growing adoption of advanced Wi-Fi solutions, including mesh routers for enhanced whole-home coverage and Wi-Fi 6E-capable access points for higher throughput on multi-gigabit FTTH connections, continues to play an important role in enhancing fixed performance outcomes in the UK. In the year gone by, fixed ISPs have increasingly relied on ‘Wi-Fi guarantees’ as a cornerstone of their marketing strategies, offering promises of minimum download speeds in every room—backed by money-back assurances.

Building on this momentum, Wi-Fi 7 is expected to become the default standard for CPE provided by UK ISPs on premium FTTH tariffs from next year. BT was among the first ISPs globally to launch a next-generation Wi-Fi 7 router earlier this year, partnering with Qualcomm to introduce its new ‘Smart Hub Pro’ and ‘Smart Wi-Fi Pro’ CPE solutions to EE Home Broadband customers. 

Merger approval ups the ante on convergence moving into 2025

The merger between Three and Vodafone paves the way for the UK to have three converged operators for the first time. The merged entity, following in the footsteps of previous tie-ups between BT and EE in 2016 and Virgin Media and O2 in 2021, will aim to fully integrate its fixed and combined mobile networks to deliver a differentiated experience that is better than the sum of its individual parts.

This trend is expected to drive operators to move beyond basic cross-selling of mobile and fixed services, instead positioning converged solutions as premium tariff bundles that deliver seamless, best-in-class experiences across fixed, mobile and Wi-Fi—on any device, anywhere. BT’s ‘EE One’ converged solution, unveiled alongside its 5G SA and Wi-Fi 7 launches earlier this year, offers a preview of the kinds of solutions likely to emerge from all converged operators in 2025.

Operator investments in bringing their fixed and mobile networks closer together will play a key role in ensuring subscribers enjoy an improved experience across all access paths. VMO2, for example, recently announced the activation of its ‘Converged Interconnected Network’ architecture, which it touted as improving the operator’s ability to manage traffic flows across its fixed and mobile services by aggregating data closer to the end user before routing it back to the core network. 

Key Trends to Watch in 2025

Mobile Data Traffic Growth Plateau

The UK, like other advanced mobile markets in Europe and North America, is entering a phase of declining mobile data traffic growth, following an S-curve trajectory. Ofcom reported an 18% increase in total monthly traffic in 2024, marking a slowdown from the 25% growth observed in both 2022 and 2023.  This trend of moderated growth is expected to continue next year and warrants close attention, as it could significantly impact mobile operators’ capital cycles, spectrum demand and equipment vendors’ business models over the long term in the UK and further afield. 

Private Network Proliferation

The removal of the requirement to individually register end-user devices for low-power use in shared bands, increased availability of medium-power licenses and the launch of a comprehensive spectrum mapping tool for the 3.8-4.2 GHz band were key milestones in Ofcom’s support for private networks in 2024. These measures contributed to the provision of 113 new shared access licenses between July and November, including 45 in the 1800 MHz band and 68 in the 3.8-4.2 GHz band. Further growth in the UK’s private network ecosystem is expected in 2025, with Ofcom set to enable low-power indoor access in the 2.3 GHz band.

Direct-to-Device (D2D) Arrival

Ofcom is developing a framework to authorise and facilitate D2D services in the UK, with a consultation scheduled for the first half of 2025. It will also review its approach to the mobile satellite service (MSS) licences in the 2 GHz band, as the current EU-wide licences are set to expire in 2027, allowing the UK to independently determine their future use. EE and O2 are the most likely potential candidates for a Direct-to-Cell (D2C) partnership with SpaceX’s Starlink, while Vodafone has been flirting with AST SpaceMobile.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| February 23, 2025

A Global Evaluation of Europe's Competitiveness in 5G SA

The European Commission has positioned 5G SA at the center of its emerging pro-growth industrial strategy to boost competitiveness. Yet, despite setting the most ambitious 5G infrastructure targets of any advanced liberal economy, Europe trails the US and Asia in deployment progress.

The global rollout of 5G standalone (SA) networks is gaining momentum after a slower-than-expected start, driven in part by its technical complexity and significant capital requirements in a challenging business environment. Operators continue to advance cautiously, seeking monetization strategies to capture new revenues in both consumer and enterprise segments.

For governments, being at the frontier of the next phase of the 5G cycle is a key differentiator, with the low-latency and high-reliability capabilities of 5G SA pitched as critical to enabling new industrial applications, strengthening digital competitiveness, and attracting inward investment. Mobile networks are now a core pillar of strategic national infrastructure.

The European Commission’s commitment to high-performing mobile network infrastructure has been a hallmark of its Digital Decade program in recent years, further strengthened by the recent launch of the “Competitiveness Compass”—a key strategic framework based on the recommendations of Mario Draghi’s high-profile report. This initiative aims to enhance Europe’s competitiveness in critical industries through a new pro-growth industrial strategy, prioritizing 5G SA investments as a central driver of the program.

However, despite setting the most ambitious 5G infrastructure targets of any advanced liberal economy, Europe currently features the poorest outcomes in terms of 5G SA performance and availability among major global regions. Across Europe, significant disparities in 5G SA rollout progress among countries have undermined the bloc’s competitiveness in the technology, widening the gap with leaders like the US and China.

For the first time, Ookla, in collaboration with Omdia, has published comprehensive research on the global reach and performance of 5G SA networks. The report focuses on Europe’s competitiveness in the technology, progress in monetizing the 5G core for consumer and enterprise use cases, and successful government policies, forming part of a flagship global report on 5G SA commercialization progress.


Key Takeaways:

Europe severely lags other major regions in 5G SA rollout and performance

In Q4 2024, China (80%), India (52%), and the United States (24%) led the world in 5G SA availability based on Speedtest® sample share, markedly ahead of Europe (2%). The region also lagged behind its peers on other key metrics, with the median European consumer experiencing 5G SA download speeds of 221.17 Mbps—lower than those in the Americas (384.42 Mbps) and both Developed (237.04 Mbps) and Emerging (259.73 Mbps) Asia Pacific. The interplay of earlier deployments, a more diversified multi-band spectrum strategy, and greater operator willingness to invest in the 5G core to monetize new use cases have driven rollouts at a faster pace in regions outside Europe.

Europe Trails Other Regions in 5G SA Availability and Performance
Speedtest Intelligence® | Q1 2023 – Q4 2024

Europe exhibits significant disparities in 5G SA deployment among member states

Within Europe, while 5G SA rollout progress remains highly varied, the best outcomes have been observed in countries that have specific policies intended to incentivize 5G SA deployment. Germany, the United Kingdom, and Spain—all four-player markets benefiting from targeted 5G SA-specific fiscal stimuli or coverage obligations— lead Europe in terms of 5G SA rollout across multiple operators. Meanwhile, Southern and Central European countries have supplanted the Nordics at the forefront of this phase of the 5G cycle, with Greece (547.52 Mbps) leading on median download speed in Q4 2024 thanks to its 3.5 GHz usage, and Spain and Austria excelling in rural 5G SA coverage on the back of intensive deployment of the 700 MHz band.

Spain and Austria Lead Europe's 5G SA Rollout in Urban Areas as Expansion Accelerated at the end of 2024
Speedtest Intelligence® | Q1 2023 – Q4 2024

For Europe, the performance improvements unlocked by 5G SA demonstrate the strategic importance of the technology in driving digital competitiveness

Globally, 5G SA networks are delivering significantly improved performance across key metrics compared to the non-standalone architecture. In Q4 2024, median latency—a key beneficiary of transitioning to the 5G core—was nearly 20% lower on 5G SA networks compared to 5G Non-Standalone (NSA) networks in Europe and China, and more than 25% lower in the United States and Japan. Similarly, median download speeds on 5G SA were more than 57% higher in Europe and 84% higher in China than those on non-standalone networks.

European 5G SA Users Benefit from Markedly Lower Latency and Higher Download Speed
Speedtest Intelligence® | Q4 2024

Notwithstanding these improvements, 5G SA’s full potential remains largely untapped in Europe. Advanced uplink capabilities unlocked by the technology—such as higher-order MIMO and carrier aggregation—remain limited to a few operators in leading markets like the United States, highlighting the still nascent profile of the device and equipment ecosystems for 5G SA. 

To capture the full monetization potential of the technology, European operators need to adapt their business models and cater to new verticals

While 5G investments in Europe have yet to yield significant monetization, operators in other regions are leveraging the enhanced performance and flexibility of the new 5G core to drive tariff and service innovation. They are focusing on consumer segmentation with performance-oriented tariff upsells and developing tailored network slices to deliver new services across diverse enterprise verticals.

European operators at the forefront of business model evolution with 5G SA—such as BT’s EE in the UK, Deutsche Telekom in Germany, Elisa in Finland, and 3 in Austria—are leveraging the technology to consolidate their positions at the premium end of the market and stimulate average revenue per user (ARPU) growth.


Download the full report

For an in-depth, first-of-its-kind analysis of Europe’s competitiveness in 5G SA—covering global deployment and monetization trends, Speedtest Intelligence® network performance data, Omdia’s adoption and core spending forecasts, and key policy recommendations to strengthen Europe’s competitiveness—download our full white paper, A Global Evaluation of Europe’s Competitiveness in 5G SA.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| February 26, 2025

Wi-Fi 7 in Europe: France Leads in Differentiating Multi-Gigabit Fiber Experiences

Intense fiber overbuilding in advanced European markets has made investments in timely Wi-Fi upgrades a critical lever for enhancing and differentiating multi-gigabit experiences

European markets are at the forefront of the global transition to full-fiber networks in the last mile, with multi-gigabit home broadband connections becoming increasingly common in the most advanced Western and Northern European markets. A groundswell of fiber investment has driven extensive network overbuilding at many residential addresses, expanding consumer choice but making it difficult for ISPs to differentiate beyond price.

The critical role of home Wi-Fi solutions in enhancing broadband experiences has come into sharper focus in recent years, with leading European ISPs adopting mesh solutions and offering more advanced customer premise equipment (CPE) to improve performance and unlock new revenue streams through innovative bundling and minimum Wi-Fi speed guarantees. The challenge now lies in spreading gigabit-level performance throughout the entire home, beyond the line connection point, to meet the growing demands of an increasing number of connected devices.

The arrival of Wi-Fi 7 presents a unique opportunity for leading ISPs to address this challenge head-on, offering a new avenue for fiber differentiation and a stronger focus on quality of experience (QoE). With advancements in speed, latency, and efficiency, Wi-Fi 7 is becoming an important tool for ISPs looking to compete more effectively in the premium segment of the fixed market, enabling best-in-class experiences on multi-gigabit connections.

Key Takeaways:

  • Central and Western European countries lead in Wi-Fi 7 adoption, while the Nordics boast the most advanced overall Wi-Fi mix: At the end of 2024, France (1.5% Speedtest sample share1), Switzerland (0.9%), and Denmark (0.6%)—among the world’s leading fixed broadband markets in fiber penetration and consistently ranked in the Speedtest Global Index™ top ten for median download speed—had the highest adoption of Wi-Fi 7 connections. When considering overall adoption of modern Wi-Fi standards (Wi-Fi 6 and Wi-Fi 7 combined), Nordic countries such as Iceland (46%), Norway (39%), and Sweden (38%) led in Europe, with over a third of all connections in each of these countries using these modern Wi-Fi standards.
  • Wi-Fi 7 drives substantial improvements in performance across all metrics: Among the ten countries with the highest Wi-Fi 7 penetration at the end of 2024, the average country-wide median download speeds on Wi-Fi 7 (565.80 Mbps) were up to 78% higher than those on Wi-Fi 6. Upload speeds—boosted by technical advancements like Multi-Link Operation (MLO), which enables simultaneous transmissions across multiple spectrum bands—were nearly twice as fast as those on Wi-Fi 6. Latency improvements, meanwhile, have been more modest, with median latency (13 ms) across the country sample just over 11% lower than on Wi-Fi 6.
  • Legacy Wi-Fi standards continue to dominate in Europe, weighing on fiber experiences: By the end of 2024, legacy Wi-Fi standards (Wi-Fi 4 and Wi-Fi 5) still accounted for over 70% of connections in many European countries. Western European markets with very high fiber penetration, such as Spain (75% legacy Wi-Fi share), Portugal (78%), and Ireland (84%), lagged, hindering their competitiveness in fixed network performance.

Legacy Wi-Fi standards have become a bottleneck in fiber-rich countries, limiting the potential of multi-gigabit connections

ISP investments in advanced CPE, particularly those supporting the latest Wi-Fi standards and mesh solutions, are critical for maximizing the throughput, coverage, and overall reliability benefits of fiber broadband—especially to optimize the experience in bread-and-butter applications like video streaming, gaming, and web browsing.

Failing to migrate fixed subscribers to modern CPE (e.g., Wi-Fi 6 and Wi-Fi 7) is strongly associated with poorer performance outcomes, especially at the upper end (e.g., 90th percentile). This undermines the benefits of full-fiber connections, especially when higher-speed tiers—often offered at a premium price—are not matched with sufficiently capable CPE.

The Profile of Wi-Fi Standard Adoption Varies Widely Across Europe
Speedtest Intelligence® | December 2024

The rollout of full-fiber networks in Europe—particularly investments in infrastructure supporting symmetrical 10 Gbps speeds with XGS-PON (the latest standard in passive optical networking)—is driving the proliferation of multi-gigabit residential connections. As a result, the bottleneck has shifted from the last-mile access line to in-home Wi-Fi networks, which now face challenges from larger property sizes, modern insulation materials that hinder signal propagation, and the rapid growth in both the number and diversity of connected devices.

Majority of Fixed Broadband Subscriptions in France Are Now Multi-Gigabit Capable
European Commission | DESI 2024

Multi-gigabit fiber connections accounted for nearly 20% of all fixed broadband subscriptions on average across the EU, according to the latest Digital Economy and Society Index (DESI) published by the European Commission in 2024. France (52%), Hungary (37%), and Romania (30.45%) led the bloc, each featuring well over a quarter of all fixed subscriptions provisioned with download speeds of at least 1 Gbps.

For these multi-gigabit subscribers—who typically represent the high-value premium segment of the fixed market and typically expect the best experience—legacy Wi-Fi standards can significantly constrain performance. Wi-Fi 4, for example, which still accounted for over 20% of active connections in the UK and France at the end of 2024 (based on Speedtest sample share), offers a maximum theoretical throughput of 600 Mbps, while Wi-Fi 5 (which made up more than half of all Wi-Fi connections in the UK) raises this to 3.5 Gbps. However, both fall well short of the increasingly common provisioned fiber speeds of 5 Gbps and 10 Gbps seen in advanced European markets such as France.

Fiber-Rich Countries like Ireland, Spain, and Portugal Still Have a Large Legacy Wi-Fi Base
Speedtest Intelligence® | December 2024

Analysis of Speedtest Intelligence® data reveals a general trend in Europe: markets with higher full-fiber penetration and a greater share of multi-gigabit subscriptions tend to have a lower proportion of legacy Wi-Fi standards in use, reflecting ISP success in migrating customers to modern CPE. However, several notable markets stand out as exceptions to this trend, highlighting the need for new strategies to increase the adoption of more capable Wi-Fi standards.

Spain, Portugal, and Ireland, for example, rank among the highest in Europe for full-fiber coverage but have a disproportionately outdated Wi-Fi mix, with up to 84% of fixed connections still reliant on Wi-Fi 4 or Wi-Fi 5 in these countries at the end of 2024. The persistence of legacy Wi-Fi standards, combined with lower multi-gigabit adoption—partly due to ISPs limiting access to higher provisioned speed tiers—may help explain why these countries underperform in the Speedtest Global Index compared to France and Denmark, despite exhibiting wider overall full-fiber coverage. This is a notable example of legacy Wi-Fi standards acting as a bottleneck on fixed performance in fiber-rich countries. 

Early deployments of Wi-Fi 7 demonstrate significant performance gains, showcasing the full potential of fiber

Wi-Fi 6, introduced five years ago, marked a major advancement in home networking, delivering the first Wi-Fi standard designed to fully harness the multi-gigabit capability of full-fiber connections. The later introduction of Wi-Fi 6E, with support for the 6 GHz band, unlocked significant additional capacity in less congested spectrum, enhancing ISPs’ ability to improve home Wi-Fi performance at the high end. Beyond delivering better performance, it also enabled ISPs to monetize ‘Wi-Fi guarantees’ for the first time through the provision of high-performance mesh systems and minimum multi-room speed commitments.

Despite early supply chain disruptions from the pandemic affecting the availability of Wi-Fi 6-capable CPE, the technology has been widely deployed across advanced markets in Europe, yielding significant improvements in real-world fixed broadband performance. By the end of 2024, for instance, median download speeds on Wi-Fi 6 in the top three European markets with the highest adoption—based on Speedtest sample share—were at least 50% faster than those on Wi-Fi 5, demonstrating a marked performance uplift. These high-penetration markets, primarily in the Nordics, included Iceland (Wi-Fi 6 accounting for 45% of all connections), Switzerland (42%), and Norway (38%).

The introduction of Wi-Fi 7, driven in Europe by large-scale launches from Iliad’s Free in France and BT’s EE last year, marks the next step in ISPs’ efforts to maximize the performance of multi-gigabit full-fiber connections and spread it throughout the home with advanced mesh systems. While Wi-Fi 6/6E CPE will continue to serve the vast majority of full-fiber connections effectively, Wi-Fi 7’s future-proof scalability and its notable latency improvements—beyond just headline provisioned speeds—will become key differentiators over time for better QoE outcomes. 

Central and Western European Countries lead Europe in Wi-Fi 7 Adoption
Speedtest Intelligence® | December 2024

Wi-Fi 7-capable CPE significantly expand the theoretical performance ceiling of home Wi-Fi, supporting more connected devices and nearly quintupling potential downlink speeds. These enhancements are enabled by key features such as doubling the bandwidth in the 6 GHz band, allowing devices to operate across multiple bands simultaneously with Multi-Link Operation (MLO), and improving scheduling to minimize congestion and interference.

The real-world performance gains from Wi-Fi 7, coupled with the higher provisioned tariff speeds typically offered with Wi-Fi 7-capable CPE (such as Free’s 8 Gbps symmetrical offering in France), are evident in Speedtest Intelligence data. At the end of 2024, Free’s subscribers in France—where Wi-Fi 7 made up over 4% of the ISP’s Wi-Fi connections, among the highest share in Europe—recorded median download speeds of over 1.1 Gbps on Wi-Fi 7, nearly double the performance levels observed on Wi-Fi 6.

Wi-Fi 7 Drives Substantial Download Speed Uplift on Multi-Gigabit Connections
Speedtest Intelligence® | December 2024

Similar improvements in download speed performance on Wi-Fi 7 have been observed in the UK, where EE has bundled Wi-Fi 7 CPE with tariffs offering full-fiber speeds of up to 1.6 Gbps and introduced a money-back guarantee to ensure at least 100 Mbps in ‘every corner’ of the home. Speedtest Intelligence data shows that median download speeds on Wi-Fi 7 with EE’s fixed broadband reached 665.01 Mbps at the end of 2024—more than four times the performance recorded on EE-based Wi-Fi 6 connections during the same period.

Wi-Fi 7 is a Key Enabler of ISP Ambitions for Symmetrical Uplink and Downlink Performance
Speedtest Intelligence® | December 2024

In terms of upload speed performance—critical for applications like live streaming and video conferencing—Wi-Fi 7 has been positioned as a mechanism to strengthen ISPs’ ability to deliver symmetrical multi-gigabit speeds across both the downlink and uplink. At the end of 2024, median upload speeds on Wi-Fi 7 were up to 80% faster on Free and nearly twice as fast on EE compared to Wi-Fi 6 connections.

Wi-Fi 7's Latency Improvements Surpass Those of Recent Generations
Speedtest Intelligence® | December 2024

Latency, unlike download and upload speeds, is not directly influenced by the impact of ISPs bundling Wi-Fi 7-capable CPE with higher-tier tariff speeds. However, notable improvements are still evident in this metric on Wi-Fi 7, driven by Multi-Link Operation (MLO). Median latency on EE’s Wi-Fi 7 connections in the UK reached 17 ms at the end of 2024, a 12% improvement over Wi-Fi 6, while Free in France recorded a median latency of 18 ms, reflecting a 7% reduction.

While these latency improvements may seem modest, they can translate into significantly enhancing QoE in interactive, time-sensitive applications such as gaming and videoconferencing, delivering a substantial upgrade over legacy Wi-Fi standards.

Premium Wi-Fi experiences present new opportunities for ISPs

The strategic shift toward integrating high-performance Wi-Fi 7 CPE at the core of multi-gigabit fiber offerings highlights leading ISPs’ efforts to meet consumer demand to spread best-in-class performance throughout the home. This approach not only enhances QoE outcomes but also unlocks new recurring revenue streams for ISPs through bundled equipment and minimum performance guarantees.

European countries and ISPs that swiftly transition a larger share of their base from legacy Wi-Fi standards to more advanced CPE will maintain a significant competitive edge in differentiating their fiber experiences. 


Ookla can assist ISPs, venue owners, and companies in designing Wi-Fi networks, monitoring their performance, and optimizing them. Please contact us to learn more about Speedtest Intelligence and Ekahau.

  1. Sample share based on Android only. ↩︎

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| April 29, 2025

Power Outages in Spain and Portugal Test the Resilience of Europe’s Telecoms Infrastructure

The April 28th event highlights concerns about the critical need for resilience and continuity of service for telecom providers

Spain and Portugal are in recovery mode after a historic power outage crippled their national grids on April 28, triggering a cascading failure across mobile network infrastructure. Analysis of Speedtest Intelligence® and Downdetector® data reveals that network performance progressively deteriorated as battery backups, where available, were exhausted, and shifting traffic patterns placed maximum strain on an already stretched mobile site grid. The scale of the disruption—with near-synchronous impact across all operators in both countries—marks the largest stress test of telecommunications infrastructure in Europe in recent memory.

Key Takeaways:

Power outages triggered a rapid, severe, and sustained decline in mobile performance across all operators in Spain and Portugal on April 28, with impacts peaking in the mid-afternoon as backup batteries became depleted. The share of Spanish mobile users experiencing a consistent network connection (defined as minimum 5 Mbps download speeds and 1 Mbps upload speeds) dropped from a baseline of over 90% at 9:00 AM CET on April 28 to 50% by 12:00 PM, reaching a low of 40% by 3 PM. The decline in network consistency was even more pronounced on Portuguese mobile networks, falling below 40% by 2 PM and initially recovering more slowly than in Spain. Median mobile download speeds on April 28 were 73% lower in Spain and 75% lower in Portugal compared to the previous day.

Mobile Network Performance Collapsed in Close Synchrony with Power Grid Outage in Spain and Portugal
Speedtest Intelligence® | 28 April 2025 (CET)

While substantial service disruptions affected all operators, mobile performance remained relatively stronger on Orange and Movistar in Spain, and Vodafone in Portugal, compared to others on April 28. In Spain, Movistar delivered higher mobile download speeds (1.01 Mbps), upload speeds (0.30 Mbps), and lower multi-server latency (190 ms) at the 10th percentile—meaning for the worst-performing user —on April 28 compared to other Spanish operators, with Orange close behind. This suggests that, even in the worst cases, Movistar’s weakest network performance was materially better than that of Yoigo or Vodafone on average. In Portugal, Vodafone showed a clear lead over both NOS and MEO in metrics such as median download speed and latency on April 28, marking a shift from the pre-event trend in which NOS had led on several performance measures.

Consistency Remained Materially Depressed Across All Operators by Midnight on April 28
Speedtest Intelligence® | 28 April 2025 (CET)

The magnitude of service disruption varied across Spain and Portugal, reflecting differences in regional telecoms infrastructure resilience and the timing of power restoration. In Spain, the outer fringes of the mainland—including the northern and Mediterranean coasts as well as the southern and northeastern border regions—experienced the sharpest declines in mobile performance on April 28, but also showed faster recovery throughout the day, closely tracking grid restoration patterns. Median download speeds fell by more than 85% across areas such as the Valencian Community, Galicia, Andalusia, and the Region of Murcia, compared to declines of around 60% in central regions like Castile-La Mancha, Castile and León, and the Community of Madrid. In Portugal, the most significant impacts were likewise concentrated along the north-south and coastal corridor—from Braga and Porto down through Vila Real and Santarém—where download speeds fell by as much as 90%. In contrast, the interior highlands experienced milder declines of less than 40%, possibly reflecting earlier network hardening efforts in response to wildfire risks.

Outer Regions of the Spanish Mainland Suffered Largest Mobile Network Impacts
Speedtest Intelligence® | Comparison of Median Download Speed on April 27 and April 28

Network outages extended beyond declines in mobile performance to include complete loss of service

In practical terms, the service disruptions and declines in mobile performance in Spain and Portugal led to a significant deterioration in quality of experience (QoE) outcomes. Speedtest Intelligence data revealed a sharp rise in web page load times, a decrease in the proportion of mobile users able to stream Full HD videos, and a substantial increase in latency to key gaming and hyperscaler services across both countries on April 28. In Spain, for example, median web page load time rose by more than 20% where access remained available, while in Portugal it increased by more than 27%.

In the few locations where substantial power backup was available at mobile sites, either through batteries or stationary generators, site uptime was more resilient. However, the cascading effects of increased load, driven both by users migrating from nearby offline sites and by subscribers relying on the mobile network as a substitute for fixed broadband, likely played a significant role in depressing mobile network performance.

The large number of mobile users who were left without any network connection for a prolonged period, with no access to data services and only limited access to voice and text, was reflected in a record volume of partial or failed Speedtest sessions observed on the day of the outage, as large numbers of network subscribers attempted to diagnose connectivity issues but lacked a connection altogether to complete a test.

Power Cuts Produced a Major Spike in Telecoms Outage Reports Across Spain and Portugal
Downdetector® | 28 April 2025 (CET)

This likely also explains the unusual pattern of Downdetector outage reports on April 28, which spiked in Spain and Portugal immediately after the power outage took hold, declined during the afternoon as network performance reached its lowest point with backup batteries depleted, and then surged again in the evening as power was restored and users were better able to access a connection to report outages affecting one of their access paths.

The best time to strengthen mobile networks is before the lights go out

The limited penetration of battery backup solutions in the mobile site grids across Spain and Portugal was a key contributor to the scale of network disruption caused by the collapse of the power grid on April 28, providing a historic lesson on the importance of infrastructure redundancy.

The policy success of Nordic countries such as Norway and Finland, where local regulators NKOM and Traficom have intervened with legislative instruments to stipulate a minimum number of hours of continuity of mobile service post-power outage, demonstrates that there are viable solutions to harden mobile network infrastructure. Similar efforts have been observed in Australia, where the government subsidized a ‘Mobile Network Hardening’ program to retrofit 467 cell sites with 12 hours power backup capability.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| February 5, 2025

Starlink Shines in Europe as Constellation Investments Boost Performance

Recent satellite launches have improved Starlink’s performance in Europe, bolstering its credentials as a competitive broadband solution.

While Europe may not represent the largest market for satellite solutions compared to other large landmass regions with lower fiber density and a greater share of the population living in rural areas, low Earth orbit (LEO) constellations have emerged as an important part of the connectivity toolkit in the region. 

SpaceX’s Starlink has secured a leading position in the LEO market, both in Europe and globally. With a network of more than 7,000 satellites worldwide, it remains the most capable in terms of coverage and capacity, providing broadband access throughout most of Europe.

As Starlink adoption on the continent has surged, even in unexpected places like London—where network capacity has been exhausted and the service is sold out—SpaceX has moved swiftly to bolster its constellation. The company ramped up investments to increase the density of its ground stations and launched a blitz of new satellites in the latter half of last year.

This article explores how SpaceX’s investments are contributing to Starlink’s performance in Europe as the service scales up amid intensifying competition from the rapid expansion of fiber-to-the-home (FTTH) infrastructure across the continent. 

Key Takeaways:

  • Significant improvements in latency translate into better quality of experience (QoE) for Starlink users across Europe. The latency disparity between Starlink and the aggregate terrestrial fixed broadband market has narrowed substantially across Europe over the past two years. In Q4 2024, Starlink users in Western Europe experienced the lowest median latencies on the continent, with the United Kingdom (41 ms), Belgium (46 ms) and Luxembourg (46 ms) leading the way. Improvements in latency have boosted Starlink’s QoE performance for video streaming, web browsing and gaming, as evidenced by outcomes such as shorter video start times and reduced game latency.
  • Starlink’s download speeds are recovering in most countries as SpaceX continues to scale capacity with recent satellite launches. In Q4 2024, most European countries experienced an improvement in Starlink download speeds, likely driven by the continued expansion of the satellite constellation. The sharp increase in operational satellites at the end of October last year appears to have contributed to higher speeds across multiple countries, with some regions seeing particularly notable gains. Southern European countries such as Croatia (~70%) and Greece (~65%) recorded substantial quarter-on-quarter download speed increases between the third and fourth quarters of last year, now ranking among the fastest Starlink connections in Europe.
  • Starlink adoption is more highly concentrated in countries with lower levels of fiber penetration and a larger proportion of the population living in rural areas. Central and Southern European countries such as Germany, Greece, Italy and Croatia have below-average FTTH coverage compared to the EU average and exhibit higher levels of Starlink adoption, likely due to the LEO solution being relatively more competitive (either on performance or price) in these regions. At the same time, while Starlink continues to provide higher speeds than the aggregate terrestrial fixed broadband market in some countries—including Greece, the Czech Republic, Italy, and Croatia—the number of such markets is steadily decreasing. Significant fiber investments across Europe have improved fixed broadband speeds over the past two years, increasingly challenging Starlink’s competitiveness.

A Surge in Satellite Launches Expanded the Starlink Constellation in Late 2024
Source: SatelliteMap.space


Starlink latency improvements continue at pace across Europe

The physics of transmitting data across vast distances between Earth and space has long challenged satellite operators in their efforts to compete with terrestrial fixed broadband services in Europe on latency. Starlink’s LEO system has been a game-changer, significantly improving latency performance compared to traditional satellite systems that rely on mid-Earth or geostationary orbits.

Over the last two years, SpaceX has been focused on building on this advantage and narrowing the disparity between the performance of its service and what is available from terrestrial fixed operators. To achieve this, it has sought to reduce the distance and number of hops data travels across its network. This has involved massively expanding its satellite constellation over Europe—boosting inter-satellite links for more direct routing—and increasing ground station density to optimize connections to the terrestrial internet.

While the latencies observed in the aggregate fixed broadband market remain materially lower than those of Starlink across Europe, there has been remarkable progress in improving its competitiveness. Speedtest Intelligence® data reveals a consistent trend of double-digit declines in median latency across over a dozen European countries between Q4 2023 and Q4 2024. 

During the period between Q4 2023 and Q4 2024, countries in Central and Southern Europe recorded significant improvements in Starlink’s median latency performance. Greece saw its median latency decline by 54%, while Switzerland and Austria saw declines of 28% and 27% respectively. These improvements are contributing to Western Europe’s strong overall performance in latency on Starlink connections, with several countries now approaching the 40 ms mark for the first time. The United Kingdom led the continent with a median latency of 41ms in Q4 2024, followed by Belgium (46 ms), Luxembourg (46 ms) and Ireland (47 ms).

This rapid pace of improvement in latency comes from a high baseline but is at least twice as fast as the underlying rate of improvement in the aggregate fixed broadband market across most European countries. A notable exception is Spain, where Starlink’s median latency of 54 ms showed only a 4% reduction over the year, matching the modest improvement seen in the rest of the country’s fixed broadband market. This limited improvement may reflect orbit-related factors, as neighboring Portugal also experienced a relatively small 8% reduction in Starlink latency compared to the larger improvements observed in most other European countries.

Starlink's Varied Performance Reflects Europe's Regional Diversity
Speedtest Intelligence® | Q4 2024

Across Starlink’s European footprint, latency outcomes continue to vary significantly by country. In Southern Europe, Cyprus (144 ms) and Malta (106 ms) recorded some of the continent’s highest latency in Q4 2024, while Nordic countries like Finland (89 ms) and Norway (79 ms)—despite often leading in Ookla’s terrestrial benchmarks—also lagged behind.

These regional disparities in latency performance highlight the immense technical challenge of delivering uniform service across Europe. Higher-latitude Nordic countries often rely on Starlink’s polar-orbit satellites for coverage in the far north, which can impact performance. Meanwhile, Cyprus and Malta’s higher latency may stem from a limited ground station presence, increasing reliance on inter-satellite links for connectivity.


Shifts in download speeds indicate Starlink is balancing capacity and demand in Europe

Unlike latency, which has seen significant and sustained improvements across most European countries over the past two years in Speedtest Intelligence data, Starlink’s download speed performance has faced growing pressure as the service scaled and network usage increased.

Between Q4 2022 and Q4 2023, Central European countries saw some of the steepest declines in median download speeds. In Germany, speeds fell by 31%—from 94.37 Mbps to 65.44 Mbps—while Switzerland recorded a 24% drop, going from 136.03 Mbps to 103.88 Mbps. Combined with the backdrop of improving median download speeds in terrestrial fixed broadband—driven by accelerating FTTH deployment and adoption—Starlink’s competitiveness on speed eroded over this period in many parts of Europe. 

For the first time in Q4 2024, there were signs that the successive speed declines observed in previous quarters may have stabilized, with early indications of a potential recovery. However, given quarter-to-quarter variability, it remains to be seen whether this trend will hold in the coming year.

Nonetheless, the timing of these improvements dovetails with the reported jump in the number of Starlink satellites in service from late October last year, likely reflecting the additional capacity afforded by an expanded constellation above Europe.

Starlink Download Speeds Improved in Most European Countries in Q4 2024 Following Constellation Expansion
Speedtest Intelligence® | Q4 2022 — Q4 2024


While most European countries recorded a material quarter-on-quarter boost in Starlink’s median download speeds in Q4 2024, the most pronounced gains were concentrated in Southern Europe. The significant improvements in countries like Croatia (~70%) and Greece (~65%) have propelled them to be among the top in Europe in terms of median download speed on Starlink, joining other neighbors in nearby countries like Hungary and Romania.

Even the previously mentioned examples, Germany and Switzerland, for the first time in almost two years, saw a quarter-on-quarter speed increase in Q4 2024, rising by 18% and 11% respectively. The overall movements have left countries in Central and Southern Europe trailing in Starlink’s median download speed, with Cyprus (36.52 Mbps) and Malta (53.85 Mbps) ranking similarly as poorly as in latency, but others—most notably the Nordics—performing relatively better on median download speed than latency.

Despite the decrease in the number of countries where Starlink delivers higher median download speeds than the aggregate terrestrial fixed broadband market over time, principally a result of rising FTTH adoption driving improved fixed performance, several countries still stand out.

Starlink is Competitive with Fixed Operators in Southern Europe on Download Speed
Speedtest Intelligence® | Q4 2024

For example, in Q4 2024, median download speeds on Starlink were faster in Greece, Croatia, Italy, Austria, the Czech Republic and Estonia than the aggregate terrestrial fixed broadband speeds in these markets, all of which feature FTTH coverage below the EU average.

In the many countries where Starlink is not ahead of the rest of the fixed market on download speed performance—which is the majority of European countries—it remains competitive on other related metrics, including consistency, which measures the proportion of Speedtest samples exceeding minimum thresholds of 25 Mbps for download and 3 Mbps for upload.

In the United Kingdom, for example, Starlink’s consistency performance remained within the range of the rest of the fixed market over the last year, behind operators like Virgin Media and Vodafone but ahead of TalkTalk and PlusNet. In QoE measures such as Game Score™ (a 0-100 weighted sum incorporating multiple video performance factors), it has steadily closed the gap with the broader UK fixed market, narrowing from over 5 points in Q4 2023 to less than 3 points in Q4 2024.

This improvement in video QoE on Starlink connections has been observed across many European countries over the past year, driven by reductions in adaptive start time and failure rates—resulting in Starlink users spending less time waiting for videos to load and experiencing fewer playback issues—as well as enjoying an increase in average video bitrate.


Starlink adoption continues to be shaped by regional demographics and the varying availability of high-speed broadband

The relative penetration of Starlink across Europe (based on analysis of share of Speedtest samples) remains highly varied by country and region, shaped largely by demographics and the profile of available fixed broadband technologies in each market. Highly urbanized countries with a small share of the population living in rural areas, such as the Nordics and the Benelux region, exhibit lower levels of Starlink adoption.

Higher-than-average fiber availability and take-up in these countries (corresponding to a larger share of fixed subscriptions providing download speeds of at least 100 Mbps), combined with the performance declines at higher latitudes closer to polar orbits, mean that Starlink may not be a competitive broadband access solution for a large proportion of the population. Other factors, such as high levels of fixed wireless access (FWA) penetration—offering higher performance at lower prices than Starlink—in countries such as Finland may also contribute to dampening the appeal of LEO services there.

Starlink Adoption is Highest in Southeastern Europe, Moderate in Central and Western Europe and Lowest in Fiber-Rich Nordic and Benelux Regions
Speedtest Intelligence® | Starlink Share (%) of Total Fixed Speedtest Samples in Q4 2024

A corollary is seen in parts of Central and Southern Europe, where Starlink is relatively more competitive as a fixed broadband solution and measured take-up of alternatives like FWA is below the EU average. This is driven by higher Starlink speeds compared to other parts of Europe—particularly in Greece and Croatia—along with the lower-than-average availability of fixed networks offering very high-capacity coverage (as defined by the European Commission for FTTH and DOCSIS 3.1). As a result, Starlink is relatively more competitive in these markets and, in some cases, outperforms terrestrial fixed operators.

The higher proportion of Starlink users in Germany among Europe’s largest economies is likely a consequence of its outdated fixed broadband mix. With some of the lowest FTTH coverage in the EU and higher fixed broadband prices than elsewhere, Starlink adoption may be higher in Germany and present an attractive alternative there despite providing lower speeds than in other parts of the continent. 

Notwithstanding these structural patterns, however, not all instances of Starlink adoption fall neatly into line across Europe. As noted earlier with the example of London, some outliers are driven by specific use cases. For instance, London’s relatively high Starlink usage has been partly linked to its utility beyond home broadband and in providing connectivity for events, supporting card terminals and similar applications.

The LEO space race is heating up above Europe

SpaceX’s ambitions for Starlink in Europe extend well beyond traditional broadband. Over the coming year, the company plans to enter the direct-to-device (D2D) market—widely seen as the next frontier in the LEO space race—by connecting unmodified consumer handsets. This effort is being powered by the launch of SpaceX’s Gen2 satellites, of which the company ultimately hopes to deploy tens of thousands.

The company’s success in transforming the economics of large-scale satellite launches has inspired others to make similar moves. Amazon, for example, plans to deploy over a thousand satellites by mid-2026 through its Project Kuiper initiative, which will focus on mid-latitude coverage (lacking the polar-orbits boasted by Starlink). AST SpaceMobile, meanwhile, is targeting the D2D market and already has five satellites in operation. It aims to expand its constellation to more than 240 satellites.

We look forward to monitoring the satellite market as it expands into the D2D space in the coming months, and will return to check up on how Starlink is performing in other regions beyond Europe. For more information about Speedtest Intelligence data and insights, please contact us.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| December 11, 2024

Mobile Network Resilience Under the Spotlight in Ireland During Storm Darragh

Climate change is placing new demands on operators and regulators to harden telecoms infrastructure against severe weather events

Storm Darragh caused widespread mobile network outages across Ireland in recent days, impacting all operators. The storm resulted in the most extensive damage to the country’s electricity infrastructure in a decade, leaving nearly 400,000 premises without power at its peak.

This led to significant disruptions to mobile site uptime, prompting the swift deployment of mobile generators across affected areas and a seismic shift in mobile network usage patterns, with increased demand in locations where power cuts or other disruptions rendered fixed broadband unusable.


Mobile networks came under strain during Storm Darragh, pulling down performance nationwide

Analysis of Speedtest Intelligence® data reveals the substantial impact of the storm on mobile network performance in Ireland. A marked and sustained decline in download and upload speeds, as well as increased latency and jitter, was observed across all operators nationally. The deterioration escalated rapidly on Friday night (6th December) as the storm made landfall, peaking on Saturday (7th December) and is only slowly returning to the pre-storm performance baseline as power outages persist through this week in the worst-affected areas.

Consistency Deteriorated Across All Mobile Operators in Ireland During Storm Darragh
Speedtest Intelligence® | December 2024

Median download speeds on Saturday were nearly 70% lower than the 7-day average preceding the storm across all operators and technologies, while median latency increased by nearly 17%. Consistency—a measure of the percentage of an operator’s samples meeting or exceeding minimum download and upload thresholds—dropped to some of its lowest one-day levels recorded in Ireland in recent years. Around 40% of all samples failed to meet the minimum thresholds across 4G (5 Mbps download, 1 Mbps upload) and 5G (25 Mbps download, 3 Mbps upload) on Saturday.

This performance analysis is based on the national picture, highlighting that the impact was significant enough to lower the overall country-wide performance profile. A closer examination of the worst-affected areas along the western seaboard revealed even more pronounced declines in performance outcomes in the aftermath of the storm.

Latency Performance Deteriorated Across All Mobile Operators in Ireland During Storm Darragh
Speedtest Intelligence® | December 2024


The volume of Speedtests initiated by Irish users increased significantly above typical levels over the weekend, serving as a proxy for the connectivity challenges. This surge also reflects the impact of a shift in usage patterns, with households resorting to tethering mobile connections when fixed broadband became unavailable and thereby increasing further the strain on a depleted mobile site grid.

Download Speed Performance Deteriorated Across All Operators in Ireland During Storm Darragh

Upload Speed Performance Deteriorated Across All Mobile Operators in Ireland During Storm Darragh
Speedtest Intelligence® | December 2024

10th Percentile Download Speed Performance is Recovering As Power Outages Recede and Network Load Normalises
Speedtest Intelligence® | December 2024


Battery backup is needed for future resilience but costs remain a barrier

Lead-acid and lithium-ion batteries are widely deployed across mobile sites in Ireland and other countries, providing short-term resilience in the event of power outages. The fact that only a small proportion of deployed backup batteries provide sufficient capacity to last for multiple hours means that operators rely heavily on stationary and mobile generators during prolonged power outages.

Ireland is no exception to this trend. The UK’s Ofcom reported recently that “around 20% of all mobile sites have some backup functionality at the RAN [in the UK] for more than 15 minutes, with around 5% of sites able to withstand a six-hour power loss (excluding battery backup for transmission traffic)”. It has consulted on revised ‘Resilience Guidance’ for the UK’s telecoms operators, published a call for input (CFI) on power backup for mobile networks and is now working with the government to determine if additional resilience measures are needed. 

Mobile operators in Ireland and elsewhere proactively ensure that generators are refuelled in advance of adverse weather events like Storm Darragh and leverage strategic fuel dumps across the country to enable rapid refuelling where needed. The high upfront cost of battery backup and the high operating cost of generators, however, prohibits universal deployment in the current capital environment, with dedicated solutions needed for each operator, even at shared sites—necessitating targeted policy support and new solutions to improve network resilience as the frequency and severity of these weather events increases.

Network resilience lessons from around the world

The policy success of Nordic countries such as Norway and Finland, where local regulators NKOM and Traficom have intervened with legislative instruments to stipulate a minimum number of hours of continuity of mobile service post-power outage, demonstrates that there are viable solutions to harden mobile network infrastructure. Similar efforts have been observed in Australia, where the government subsidised a ‘Mobile Network Hardening’ programme to retrofit 467 cell sites with 12 hours power backup capability.

Ofcom’s aforementioned consultations have not yet led to the proposal of any specific measures relating to the provision of battery backup solutions in the UK. The regulator’s preliminary assessment of the feasibility of any such measures concluded that the exorbitant costs involved in providing a minimum of one hour of power resilience at every cell site in the country would not be proportionate to the potential economic benefit accrued—with cost projections in the region of £0.9-1.8 billion.

Nonetheless, Ofcom has expressed hope that the continued reduction in the cost of battery backup solutions will make interventions viable in the future. Progress in developing new business models to monetise battery backup solutions is also likely to improve their allure over time for operators, with new use cases emerging in grid frequency restoration.

Finland’s Elisa has been a global leader in this space through the success of its ‘Distributed Energy Storage’ solution, which provides energy to the grid at peak times and charges from the grid in off-peak times. The operator claims to have reduced the payback period of its mobile site battery installations to 3-5 years.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| January 20, 2025

The Envy of Europe: Nordics Lead in 5G Availability and Network Sunsets

Nordic countries have consolidated their lead in 5G Availability and network sunsets, underscoring the emergence of a two-speed Europe in 5G deployment  

Home to two of the world’s largest radio vendors, Ericsson and Nokia, and characterised by markedly higher operator profitability than much of the rest of Europe,  the Nordic region remains a key bright spot in Europe’s struggle for competitiveness against the Middle East, North America and Asia in 5G. Nordic countries have distinguished themselves in the 5G cycle through the timely release of mid-band spectrum assets, the development of innovative government policies to enable widespread rollout beyond core urban centres and a unique appetite for network sharing.

Combined with other favourable factors—such as some of the highest urbanisation rates in Europe (resulting in a smaller-than-average share of the population living in rural areas), flat topography (particularly in Denmark and Finland) and high average revenue per user (ARPU)—the Nordic countries have positioned themselves as European leaders in 5G Availability, rivaling global frontrunners like the United States, Qatar and South Korea.

Such is the importance of network quality to consumer sentiment in the Nordics that recent months have seen a flurry of operators eager to highlight major 5G coverage milestones as they complete their multi-year nationwide network refresh and expansion programmes.

At the end of 2024, Telia in Norway announced it was the first in the country to reach “close to 99% of the population” with 5G, while DNA in Finland declared that its 5G network had “reached all municipalities in mainland Finland with population coverage close to 100%“. Similar announcements came from Sweden, where Tele2 and Telenor, collaborating through the Net4Mobility joint venture, reported covering “over 90% of Sweden’s population with 5G”.

Intensive low-band deployment makes the Nordic 5G strategy the envy of Europe

Analysis of Speedtest Intelligence® data confirms that Nordic operators have much to celebrate. In Q4 2024, Nordic countries claimed three of the top five positions in Europe for 5G Availability—the percentage of users with 5G-capable devices spending most of their time connected to 5G networks. Furthermore, all four Nordic countries ranked within the top ten. Denmark retained its position as Europe’s leader, achieving an impressive 5G Availability of 83.4%, narrowly surpassing Switzerland, which remains the only other European country to exceed the 80% milestone to date. 

Two-Speed Europe: Nordic Countries Take the Lead in 5G Availability
Speedtest Intelligence® | 5G Availability (%) in Q4 2024

Spectrum configuration decisions are a critical pillar of mobile network design and play a direct role in shaping coverage outcomes. Many European countries, including Ireland (61.9%) and the Netherlands (60.5%), have achieved high levels of 5G Availability by extensively utilising Dynamic Spectrum Sharing (DSS)—a technology that allows 4G and 5G networks to share the same frequency bands simultaneously (most commonly in the 1800 MHz and 2100 MHz bands)—to rapidly and cost-effectively expand 5G coverage atop the existing site footprint.

However, this reliance on DSS to fill coverage maps can negatively impact 5G performance and is intended as a temporary measure until more traffic transitions to newer 5G networks. This helps explain why the level of 5G coverage available is not always a reliable predictor of overall performance outcomes across Europe—for example, Ireland boasts above-average 5G Availability but has consistently ranked last in Europe for median mobile download speed.

The Nordic 5G Model: Early Low-Band Spectrum Access at Competitive Prices
Source: EU4Digital


The Nordic countries stand out for achieving high levels of 5G Availability without relying disproportionately on DSS technology. Operators in all four Nordic countries benefited from the early allocation of dedicated low-band spectrum for 5G in the 700 MHz band (first assigned in Finland in 2016 and most recently in Norway in 2019) and relatively low spectrum acquisition costs (e.g., €0.218 MHz/pop in Finland versus €0.701 MHz/pop in France). This combination has enabled extensive 5G deployments across the region, delivering deeper indoor and rural 5G access compared to much of Europe, thanks to the favourable propagation characteristics of the 700 MHz band.

Higher levels of 5G Availability in the Nordics have facilitated a greater shift of traffic from 4G to 5G networks compared to other parts of Europe. For example, Finnish regulator Traficom reported that nearly a quarter of all smartphone traffic in Finland originated on 5G networks during the first half of 2024, significantly surpassing other countries that track similar metrics, such as Spain and Portugal, where the 5G traffic share (even including FWA) remained well below 20% during the same period.

Innovative ‘carrot-and-stick’ policies drive Nordic 5G rollout  

Nordic countries have consistently prioritised 5G access as a cornerstone of ambitious national digital transformation strategies. For example, the Norwegian government has introduced a range of policy measures aimed at achieving its goal of becoming the “world’s most digitalised country by 2030”. Recognising the critical role of high-speed mobile networks in driving economic competitiveness, the Nordic prime ministers signed a Letter of Intent (LOI) in 2018, declaring that the region should become the “first and most integrated 5G region in the world” and establish a “common Nordic 5G space”.

Sweden has closed the 5G Availability Gap with its Nordic Peers after a Slow Start
Speedtest Intelligence® | Q4 2023 – Q4 2024

To achieve this vision, Nordic countries adopted a whole-of-government approach, introducing a suite of financial and policy tools aimed at supporting the 5G rollout. In particular, Nordic telecoms regulators have been European leaders in the development of progressive ‘carrot-and-stick’ policies to accelerate 5G deployments and have leveraged spectrum assignments to steer operator behaviour:

  • Denmark incentivised 5G rollout through multi-band auctions in 2019 by attaching regional coverage obligations to low-band spectrum (700 MHz), requiring Danish operators to serve specific underserved addresses with minimum download speeds of 30 Mbps and upload speeds of 3 Mbps by April 2022. To encourage participation, these spectrum lots were auctioned under conditions of limited competition and without a minimum price, meaning operators could bid for additional coverage commitments in exchange for reductions in their licence costs. This innovative approach rewarded Danish operators for expanding 5G access in targeted areas with limited network access.
  • Finland implemented similar coverage obligations in its 2016 auction of the 700 MHz band, requiring operators to provide coverage to 99% of the population within four years. However, it allowed coverage from other frequency bands already in use at the time (800 MHz, 1800 MHz, and 2.6 GHz) to be included in meeting the target.
  • Sweden assigned two lots of 10 MHz in its 2018 auction of the 700 MHz band with coverage obligations, requiring operators to address prioritised areas with insufficient mobile coverage, ensuring minimum download speeds of 10 Mbps. Licence holders were required to deploy new mobile sites and invest up to €30 million to meet phased coverage targets, including 25% of the prioritised areas by the end of 2021 and 100% by the end of 2024.

Favourable Demographics and Topography Enable High 5G Availability Across Every Region in Denmark
Speedtest Intelligence® | 5G Availability (%) in Q4 2024

Denmark’s coverage obligations have delivered tangible results. Helped by the highest urbanisation rate, smallest rural population and flattest terrain among the Nordic countries, Denmark’s four operators have collectively achieved 5G Availability of at least 70% in each of the country’s regions (regioner), despite lower-than-average ARPU, according to Speedtest Intelligence data for Q4 2024.

Despite Lower Urbanisation Rates than its Nordic Peers, Norway Excels in 5G Availability
Speedtest Intelligence® | 5G Availability (%) in Q4 2024

Similarly, the most rural regions of northern Sweden (e.g., Norrbotten) and Norway (e.g., Finnmark), characterised by sparse populations, vast forests and a challenging Arctic climate, exhibit higher levels of 5G Availability than many more densely populated areas in Europe. Financial support of €140 million from the European Investment Bank (EIB) to Tele2, which also benefits Telenor through their Net4Mobility joint venture, has been instrumental in supporting 5G deployments in these rural areas of Sweden.

Rural Sweden Exhibits Higher Levels of 5G Availability than typical in Europe
Speedtest Intelligence® | 5G Availability (%) in Q4 2024

Similar financial instruments are aiding 5G deployments in rural Norway. In the first half of 2024, the Nordic Investment Bank (NIB) provided a 15-year €85 million loan to Lyse AS, the owner of Norway’s third mobile operator, Ice, to finance the upgrade of over 2,800 mobile sites and the development of more than 3,500 new ones, aiming to extend Ice’s 5G coverage to 99.5% of the population over the next three years.

Network sharing accelerates Nordic 5G rollouts in rural areas  

Higher levels of inter-operator collaboration on mobile infrastructure buildouts in the Nordics compared to other European countries have been key to improving the economics of delivering 5G coverage in rural areas. Extensive network sharing agreements between at least two operators exist in Denmark (e.g., the TT Network joint venture between Telia and Telenor), Finland (e.g., the Finnish Shared Network joint venture between DNA and Telia in Northern and Eastern Finland) and Sweden (e.g., the Net4Mobility joint venture between Tele2 and Telenor).

Deep Network Sharing among Nordic Operators Drives Symmetry in 5G Availability
Speedtest Intelligence® | 5G Availability (%) in Q4 2024

The extensive depth of network sharing has contributed to balanced 5G coverage outcomes among operators in the Nordics, resulting in a greater-than-usual symmetry in 5G Availability within these countries. Sweden exemplifies this, with nearly identical 5G Availability levels (72.5%) observed for Tele2 and Telenor, according to Speedtest Intelligence data for Q4 2024. In contrast, smaller operators that have historically relied on national roaming agreements (e.g., Ice in Norway) or are not part of major sharing arrangements (e.g., 3 in Sweden) continue to exhibit lower 5G Availability, leading to greater coverage imbalances with market leaders.

Alongside a strong appetite for network sharing, Nordic operators have also embraced the shutdown of legacy networks more rapidly than other parts of Europe. Speedtest Intelligence data for Q4 2024 shows that operators in Finland and Norway have already completed the full sunset of 3G, with Denmark expected to follow suit once 3 finalises its 3G sunset in the coming months.

Low-Band Deployment and Early Network Sunsets Minimise Nordic Subscriber Time on 2G and 3G
Speedtest Intelligence® | Q4 2024

The proportion of Nordic mobile subscribers spending the majority of their time without network access was highest in Finland (1.9%) in Q4 2024, significantly above Norway (0.8%), the regional leader. Despite progress in phasing out 3G networks, several Nordic operators are postponing their 2G shutdowns to facilitate smoother migration for legacy users. Telia in Sweden, for example, recently announced a two-year delay to its 2G switch-off, now planned for 2025, to minimise disruptions in sectors like agriculture, which rely on 2G for essential equipment such as milking robots and irrigation systems.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| January 12, 2025

How consolidation is reshaping Spain’s telecoms market in 2025 | La consolidación cambia las telecomunicaciones españolas en 2025

Spanish/Español

Spain continues to lead Europe in fiber rollout, but lagging mobile performance undermines country’s overall telecoms competitiveness

The dynamism of Spain’s telecoms market stood out among its European peers last year, with a flurry of mergers reshaping the market’s structure and strong investment in next-generation networks, supported by targeted government initiatives, improving outcomes for Spanish consumers. However, while increased fiber and 5G penetration have driven notable year-on-year improvements in overall network performance, Spain’s international competitiveness in telecoms remains highly imbalanced between its fixed and mobile infrastructure.

The country’s credentials as Europe’s preeminent fiber leader remain intact. In 2024, Spain ranked among the top three in the EU for fiber-to-the-premises (FTTP) coverage (95.2%) and the share of fixed broadband subscriptions providing download speeds above 100 Mbps (93.5%), according to the latest edition of the European Commission’s ‘State of the Digital Decade’ report. This continues to position the country significantly ahead of some of the bloc’s largest economies, most notably Germany, which still lags in FTTP coverage (28.8%) due to a slow shift away from cable networks.

Analysis of Speedtest Intelligence® data reveals that median fixed download speeds in Spain increased from 173.32 Mbps to 210.46 Mbps between 2023 and 2024. This trend of improvement was mirrored across other fixed network performance metrics, with upload speeds increasing in the same period from 129.62 Mbps to 155.53 Mbps. In Q3 2024, DIGI achieved a median fixed download speed of 321.21 Mbps in the Spanish market, followed by Jazztel (273.18 Mbps), Orange (262.78 Mbps), Yoigo (255.74 Mbps) and Movistar (180.30 Mbps).

Spain Leads Europe in Fiber Deployment and Adoption, Boasting the Highest Coverage Among the EU's Top 10 Economies
European Commission | DESI 2018 – 2024

Having achieved exceptionally high levels of FTTP penetration across urban, suburban and rural areas—placing Spain among the top three in the European Commission’s DESI 2024 Index for FTTP coverage in sparsely populated rural areas—the focus in Spain is shifting toward enhancing quality of experience (QoE) in core use cases such as gaming and video streaming. Despite boasting higher FTTP coverage and take-up rates, Spain ranks below countries like France in Ookla’s Speedtest Global Index™. This disparity highlights the influence of factors such as Wi-Fi technology—France has a higher penetration of Wi-Fi 6 and 7 in ISP-provided CPE—and tariff provisioned speeds, with a larger share of fiber customers in France subscribing to multi-gigabit plans, on fixed broadband performance.

DIGI’s strong fixed download speed performance in Spain, detailed in Ookla’s Speedtest Connectivity Report for 1H 2024, is underpinned by similar favourable factors. Notably, it was first to market in Spain with a 10 Gbps service, fully leveraging its XGS-PON fiber infrastructure. With highly competitive pricing—starting at just €20 per month for 1 Gbps and €25 per month for 10 Gbps, including Wi-Fi 6 CPE as standard—DIGI has quickly secured a significant share of multi-gigabit capable connections in the Spanish market. 

Autonomous Communities in Northern Spain Lead in Fixed Download Speed Performance
Speedtest Intelligence® | 2024

In addition to highlighting the importance of modern CPE and higher tariff-provisioned speeds, DIGI’s business last year exemplified the accelerating consolidation trends in Spain’s highly overbuilt and fragmented fiber market. The acquisition of DIGI’s fiber infrastructure by a Macquarie-led consortium, which solidified wholesale specialist Onivia’s status as the largest of the ‘neutral’ FTTP networks in Spain, dovetailed with developments such as Telefónica’s BlueVia wholesale spin-off, the emergence of MásOrange and Zegona-controlled Vodafone’s ‘FiberCo’ tie-ups with both Telefónica and MásOrange.

As observed in other European markets with significant fiber overbuild, such as the alt-net model in the UK, consolidation is a slow and challenging process. However, Spanish operators continue to pursue it to enhance the economics of their fiber investments in highly overbuilt urban areas, unlocking scale and resources to capture future growth in rural areas where overlapping infrastructure is less common. This begins with small local operators—of which there are hundreds—being absorbed by ‘local consolidators’. These are then integrated into the infrastructure portfolios of regional consolidators, ultimately leading to acquisition by one of the largest traditional players. 

Fiber Overbuild from Smaller Players like DIGI Drives Market Share Shift from Incumbents
Analysis of CNMC Market Data | 2022 – 2024

This gradual process of consolidation is reshaping the fiber business model in Spain, as traditional operators separate their infrastructure and service units to support the growth of wholesale offerings. The coming year will provide some insight into whether a consolidated third player can successfully compete and coexist alongside the vertically integrated Telefónica and MásOrange in the long-term.

MásOrange is vying for network leadership in Spain, founded on a significant spectrum advantage

The winds of consolidation have swept through the Spanish mobile market too, culminating last year in the European Commission’s approval of a 50:50 joint venture between MásMóvil and Orange. The merger has pole-vaulted the newly formed ‘MásOrange’ into a leading position in the market, both in subscription and spectrum share. To secure regulatory approval from Brussels, the merging entity committed to divesting 60 MHz of spectrum, including 20 MHz in the 3.5 GHz band, to facilitate the entry of DIGI as a fully-fledged independent mobile operator, effectively restoring the Spanish market to a four-player structure and ‘exerting a strong competitive constraint on the joint venture’.

In addition to diversifying its portfolio of brands through the merger—with Orange and Yoigo catering to the premium segment, Jazztel and MásMóvil focusing on value for money and regional brands like Euskaltel and Telecable serving local needs—MásOrange hopes its consolidated spectrum assets will enable it to achieve network leadership in the Spanish mobile market. 

Movistar Revenues Stable YoY in Q3 2024 while Vodafone and MásOrange Face Declines
Analysis of CNMC Market Data | 2022 – 2024

The merged entity’s consolidated network will be primarily based on Orange’s infrastructure, complemented by MásMóvil’s existing site portfolio and the deployment of new greenfield sites. The integration of MásMóvil’s network, which relies entirely on mid- and high-band spectrum and has historically depended on a national roaming agreement with Orange, creates a natural synergy for the merged entity. It enables the integrated network to leverage MásMóvil’s capacity and density in urban areas alongside Orange’s extensive coverage and nationwide reach.

MásOrange is particularly focused on vying to unseat Movistar’s dominance in the premium segment, a position it has long upheld thanks to its emphasis on superior network quality. Movistar emerged as the fastest mobile operator in the Spanish market in Ookla’s Speedtest Connectivity Report for 1H 2024, delivering the highest median download speeds of 82.68 Mbps.  This placed Movistar significantly ahead of Orange (56.42 Mbps) and Yoigo (36.73 Mbps).

The merged entity’s spectrum advantage is heavily weighted toward mid- and high-bands, which are typically utilised for 5G deployments in urban and suburban areas. According to data published by MásOrange, it holds 37% of all mid- and high-band assets in the Spanish market—compared to 28% and 26% for its closest competitor, Telefónica—giving it a unique opportunity to enhance 5G speed performance and gain a competitive edge.

Movistar has maintained its strong 5G speed performance with a 100 MHz allocation in the 3.5 GHz band, but this is now overshadowed by MasOrange’s expanded allocation of 170 MHz. Capital investment by the merged entity in upgrading the 5G RAN to support advanced carrier aggregation (CA) capabilities and the standalone (SA) architecture will enable it to fully realise the performance benefits of wider channel bandwidth through the extensive deployment of its 3.5 GHz spectrum across its consolidated mobile site grid. 

Seville Leads in 5G Download Speed Among Spain's Largest Cities, but Operator Performance Varies Widely
Speedtest Intelligence® | Q3 2024

To establish network leadership in coverage, however, MásOrange will need to move beyond its spectrum advantage and focus on increasing the number of physical sites in rural areas within its integrated network. In Q3 2024, Vodafone and Movistar recorded 4G Availability of 95.1% and 93.4% respectively in the Spanish market, followed by Orange at 92.7% and Yoigo at 91.5%.

In parallel to MásOrange’s network consolidation journey, DIGI is building out its own infrastructure to gradually wean itself off dependence on a national roaming and RAN sharing agreement with Telefónica (which DIGI selected over MásOrange, despite both being options under the merger conditions), starting with urban and suburban areas. The European Commission designed the spectrum divestment remedies to position DIGI to replicate the competitive pressure previously exerted by MásMóvil. The goal is for DIGI to carry a similar share of its total mobile data traffic on its own network in the coming years, at least matching the 40-60% on-net share that MásMóvil achieved pre-merger. 

Spain's Rural Provinces Trail in 5G Availability, Highlighting the Importance of Government Support through UNICO
Speedtest Intelligence® | Overall 5G Availability (%) in 2024

More broadly, it is hoped that the substantial long-term investment commitments from DIGI and MásOrange, driven by the consolidation activity, combined with government support through programmes such as Unico, will bolster Spain’s international competitiveness in mobile performance in the coming years. The country has significant catching up to do, ranking 57th in the Speedtest Global Index at the end of 2024 and trailing most of its European peers across a suite of network performance metrics, including download speed, consistency and coverage. 


La consolidación cambia las telecomunicaciones españolas en 2025

España sigue a la cabeza en despliegue de fibra en Europa, pero el rezagado desempeño móvil reduce la competitividad del país

El dinamismo del mercado español de telecomunicaciones destacó el año pasado frente al de otros mercados europeos, por fusiones que modificaron la estructura del sector y una fuerte inversión en redes de próxima generación, respaldadas por iniciativas gubernamentales, que supusieron mejoras para los consumidores españoles. Si bien la mayor penetración de la fibra y el 5G han impulsado año tras año notables avances en el rendimiento general de la red, la competitividad internacional de España en telecomunicaciones sigue estando muy desequilibrada entre su infraestructura fija y móvil.

Las credenciales del país como líder europeo en fibra permanecen intactas. En 2024, según la última edición del informe ‘Estado de la Década Digital’ de la Comisión Europea, España se situó entre los tres primeros países de la UE en cobertura de fibra hasta las instalaciones (FTTP), con un 95,21%, y en porcentaje de suscripciones de banda ancha fija con velocidades de descarga superiores a 100 Mbps (93,54%). Esto posicionó al país significativamente por delante de algunas de las economías más grandes del bloque, en particular Alemania, todavía rezagada en cobertura FTTP (28,80%).

Según Speedtest Intelligence la velocidad mediana de descarga fija en España aumentó de 173,32 Mbps a 210,46 Mbps entre 2023 y 2024. Esta tendencia de mejora se reflejó en otras métricas de rendimiento de la red fija, con velocidades medianas de carga que se incrementaron de 129.62 Mbps a 155.53 Mbps en el mismo período. En el tercer trimestre de 2024, DIGI alcanzó una velocidad mediana de descarga fija de 321,21 Mbps, por delante de Jazztel (273,18 Mbps), Orange (262,78 Mbps), Yoigo (255,74 Mbps) y Movistar (180,30 Mbps).

España lidera Europa en despliegue y adopción de fibra, con la mayor cobertura entre las 10 principales economías de la UE
Comisión Europea | DESI 2018-2024

Habiendo alcanzado niveles excepcionalmente altos de penetración de FTTP en áreas urbanas, suburbanas y rurales (que posicionan a España entre los tres primeros del índice DESI 2024 de la Comisión Europea  sobre cobertura FTTP en zonas rurales escasamente pobladas), España está cambiando el foco hacia la mejora de la calidad de la experiencia (QoE) para casos de uso como los vídeojuegos y el streaming. A pesar de contar con más cobertura y tasas de aceptación FTTP, España está por debajo de países como Francia en el Índice Global de Speedtest de Ookla.

Este desequilibrio pone de relieve la influencia en el rendimiento de la banda ancha fija de factores como la tecnología Wi-Fi (Francia tiene una mayor penetración de Wi-Fi 6 y 7 en los router proporcionados por los operadores) y las velocidades ofrecidas en la tarifa (con una mayor proporción de clientes de fibra suscritos a planes multi-gigabit en Francia).

El sólido rendimiento de la velocidad de descarga fija de DIGI en España, detallado en Informe de Conectividad de Speedtest, está respaldado por factores favorables similares. Fue el primero en comercializar en España un servicio de 10 Gbps, aprovechando al máximo su infraestructura de fibra XGS-PON. Con precios altamente competitivos (desde sólo 20€ al mes por 1 Gbps y 25€ por 10 Gbps y router Wi-Fi 6 incluido), DIGI se ha asegurado rápidamente una cuota importante de conexiones con capacidad multigigabit en el mercado español. 

Las comunidades autónomas del norte de España, líderes en rendimiento de velocidad de descarga fija
Speedtest Intelligence® | 2024

Además de evidenciar la importancia de un router moderno y velocidades más altas, el negocio de DIGI ejemplificó el año pasado la acelerada tendencia de consolidación en el fragmentado y sobredimensionado mercado español de fibra. La adquisición de la infraestructura de fibra de DIGI por parte de un consorcio liderado por Macquarie, que consolidó el estatus de Onivia como la mayor red FTTP ‘neutra’ en España, coincidió con otros acontecimientos como la escisión de BlueVia de Telefónica, la aparición de MásOrange y las alianzas de ‘FibreCo’ de Vodafone con Telefónica y MásOrange.

Como se observa en otros mercados europeos con un importante despliegue de fibra (como Reino Unido), la consolidación es un proceso lento y desafiante. Sin embargo, los operadores españoles continúan persiguiéndola para mejorar la rentabilidad de sus inversiones en fibra en áreas urbanas altamente edificadas, liberando recursos para aprovechar el crecimiento futuro en áreas rurales donde la superposición de infraestructura es menos común. Esto comienza con la absorción de pequeños operadores locales (de los que hay cientos) por “consolidadores locales”. Luego, éstos se integran en las carteras de infraestructura de los consolidadores regionales, lo que en última instancia conduce a la adquisición por parte de uno de los actores tradicionales más grandes.

El despliegue de fibra por parte de actores más pequeños como DIGI impulsa el cambio en la cuota de mercado de los operadores tradicionales
Análisis de datos de CNMC | 2022-2024

Esta consolidación gradual está modificando el negocio de la fibra en España, mientras que los operadores tradicionales separan sus unidades de infraestructura y servicios para apoyar el crecimiento de la oferta mayorista. Este año se podrá saber si un tercer actor consolidado puede competir y coexistir con éxito a largo plazo con Telefónica y MásOrange.

MásOrange compite por el liderazgo de la red en España, apoyándose en una importante ventaja de espectro

La consolidación también ha afectado al mercado móvil español. A finales del año pasado, la Comisión Europea aprobó la creación de una empresa conjunta entre MásMóvil y Orange. La fusión ha llevado a la recién formada MásOrange a una posición de liderazgo, tanto en suscripción como en cuota de espectro. Para obtener la aprobación de Bruselas, la entidad se comprometió a vender 60 MHz de espectro, incluidos 20 MHz en la banda de 3,5 GHz, para facilitar la entrada de DIGI como un operador móvil independiente de pleno derecho, convirtiendo así el mercado español en una estructura de cuatro actores. 

Además de diversificar su cartera de marcas a través de la fusión (con Orange y Yoigo en el segmento premium, Jazztel y MásMóvil centrándose en la relación calidad-precio y Euskaltel y Telecable atendiendo las necesidades locales), MásOrange espera que sus activos de espectro le permitan alcanzar el liderazgo en el mercado móvil español.

Los ingresos de Movistar se mantienen estables interanualmente en el 3T de 2024 mientras que Vodafone y MásOrange afrontan caídas
Análisis de datos de mercado de CNMC | 2022-2024

La red de la entidad se basará principalmente en la infraestructura de Orange, complementada con la cartera de sites existentes de MásMóvil y el despliegue de nuevos. La integración de la red de MásMóvil, que depende íntegramente del espectro de banda media y alta e históricamente ha dependido de un acuerdo de roaming nacional con Orange, crea una sinergia para la entidad: aprovechar la capacidad y densidad de MásMóvil en áreas urbanas junto con la amplia cobertura y alcance nacional de Orange.

MásOrange está centrado en desbancar a Movistar en el segmento premium, que ha liderado durante mucho tiempo gracias a su foco en la calidad superior de la red. Movistar emergió como el operador móvil más rápido del mercado español en el Informe de Conectividad Speedtest de Ookla para el primer semestre de 2024, al ofrecer la velocidad de descarga media más alta de 82,68 Mbps.  Esto sitúa a Movistar muy por delante de Orange (56,42 Mbps) y Yoigo (36,73 Mbps).

La ventaja espectral de MásOrange se inclina hacia las bandas medias y altas, normalmente utilizadas para implementaciones 5G en áreas urbanas y suburbanas. De acuerdo con los datos publicados por la compañía, MásOrange cuenta con el 37% de todos los activos de banda media y alta de España (en comparación con el 28% y el 26% de su competidor más cercano, Telefónica), lo que le da una oportunidad única de mejorar el rendimiento de la velocidad 5G y adelantarse a sus competidores.

Movistar ha mantenido su liderazgo en velocidad 5G con una asignación de 100 MHz en la banda de 3,5 GHz, pero esto se ve ahora eclipsado por la asignación de MásOrange de 170 MHz. La inversión de ésta para actualizar la RAN 5G para que cuente con capacidades avanzadas de agregación de operadores y arquitectura independiente (SA), le permitirá aprovechar los beneficios de rendimiento de un ancho de banda mayor a través del amplio despliegue de su espectro de 3,5 GHz en toda su red móvil consolidada. 

Sevilla lidera en velocidad de descarga 5G entre las principales ciudades de España, pero el rendimiento de los operadores varía ampliamente
Speedtest Intelligence® | Q3 2024

Sin embargo, para liderar en cobertura de red, MásOrange necesitará ir más allá de su ventaja de espectro y centrarse en incrementar el número de sites físicos en áreas rurales. En el tercer trimestre de 2024, Vodafone y Movistar registraron en el mercado español una disponibilidad 4G del 95,1% y 93,4% respectivamente, seguidas de Orange con un 92,7% y Yoigo con un 91,5%.

Paralelamente a la consolidación de la red de MásOrange, DIGI está construyendo su propia infraestructura para dejar de depender gradualmente de un acuerdo de roaming y del uso compartido de RAN con Telefónica, comenzando con zonas urbanas y suburbanas. La Comisión Europea diseñó los remedies de desinversión de espectro para que DIGI replique la presión competitiva ejercida anteriormente por MásMóvil. El objetivo es que DIGI transporte una proporción similar de su tráfico total de datos móviles en su propia red en los próximos años, al menos igualando la cuota on-net del 40-60% que MásMóvil lograba antes de la fusión. 

Provincias rurales de España, a la zaga en disponibilidad de 5G, lo que destaca la importancia del apoyo gubernamental a través de UNICO.
Speedtest Intelligence® | Disponibilidad general 5G (%) en 2024

En términos generales, se espera que los compromisos de inversión a largo plazo de DIGI y MásOrange, impulsados ​​por la consolidación, unidos al apoyo gubernamental con programas como Único, impulsen la competitividad internacional de España en rendimiento móvil en los próximos años. El país tiene mucho por hacer, ya que a finales de 2024 ocupa el puesto 57 en Índice Global de Speedtest, situándose por detrás de la mayoría de sus colegas europeos en rendimiento de red, incluidas velocidad de descarga, coherencia y cobertura.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.