| June 30, 2025

Poland Races to Regain 5G Competitiveness in Europe with Mid-Band Rollout | Polska galopuje do odzyskania konkurencyjności 5G w Europie dzięki wdrożeniu średniego pasma częstotliwości

Polish/Polski

Poland’s operators are rapidly deploying mid-band 5G in an attempt to capture the growing premium market segment

Late to the game in staging a mid-band auction, Poland has lagged behind its European peers in 5G deployment in recent years. This delay has weighed on the country’s global competitiveness in mobile network performance and slowed its progress toward meeting the European Commission’s flagship 5G deployment targets, which require universal 5G coverage across every EU member state by the end of the decade.

This article examines the state of Poland’s mobile market and its broader regional 5G competitiveness in the context of ongoing mid-band deployments. A follow-up report will assess the longer-term impact of the commercialization of the recently awarded low-band spectrum and ongoing network sunsets on network coverage and availability.

Key Takeaways:

  • Intensive capital spending on mid-band deployment drives substantial uplift in 5G performance across Polish operators from Q1 2024, pushing the country ahead of regional peers over the last year. Median 5G download speeds in Poland jumped by over 50% to 160.30 Mbps between Q1 2024 and Q1 2025, based on Speedtest Intelligence® data, propelling the country ahead of Czechia, Romania, and Slovakia for the first time in 5G performance. Despite this progress, Poland continues to trail its regional peers in 5G network Consistency, a measure of how reliably a mobile connection remains “fast enough” for normal use.
  • T-Mobile and Orange surpass Play and Plus in speed and select Quality of Experience (QoE) measures. Differences in how quickly and extensively Polish operators have deployed their mid-band spectrum assets have led to a diverging market profile since Q1 2024, with T-Mobile and Orange significantly extending their speed lead over their rivals. Between Q1 2024 and Q1 2025, median 5G download speeds rose by as much as 72% on Play (to 122.64 Mbps), 86% on T-Mobile (to 201.76 Mbps), and 90% on Orange (to 222.10 Mbps)—while declining by over 10% on Plus (to 116.76 Mbps). 
  • Network investments have broadened 5G coverage in Poland, but significant regional disparities remain. Nationally, 5G availability rose from 28.5% in Q1 2024 to 43.1% in Q1 2025, driven by continued Dynamic Spectrum Sharing (DSS) rollouts and the activation of mid-band spectrum—placing the country ahead of regional peers Bulgaria, Romania, and Hungary in 5G availability. Nonetheless, by Q4 2024, a pronounced coverage gap persisted between the country’s best- and worst-served provinces, with 5G availability in the populous Masovian Voivodeship (47.2%) double that of the Lubusz Voivodeship (23.6%).

Over the last year, Polish operators have been locked in an intense four-way race to catch up with their regional peers in 5G deployment, driven by stringent coverage obligations imposed by the Polish telecoms regulator (UKE), a wave of funding support from Brussels, and a growing push to compete for a larger share of the country’s widening premium market segment, where network performance has emerged as a key competitive differentiator.

Poland’s mobile market is today awash with deployment activity, as operators ramp up capital spending to the highest levels in years to equip thousands of mobile sites with mid-band spectrum, accelerate the sunset of 3G networks, and lay the groundwork for launching 5G standalone (SA) in the coming years. This flurry of activity follows the completion of the 700/800 MHz auction at the end of March this year, where all Polish operators secured low-band 5G spectrum for the first time—paving the way for improved rural and deep in-building 5G coverage and rounding out the country’s 5G spectrum release plans.

While 5G capital spending has slowed across much of Europe, Poland sees different dynamics due to late spectrum auctions

Poland was notably late in releasing dedicated 5G spectrum in the ‘pioneer bands’ identified by the European Commission as critical to the timely commercialization and rollout of 5G across EU member states. The country’s mid-band (3.6 GHz) auction, initially planned for mid-2020, was repeatedly delayed—by more than three years—due to the pandemic and a protracted security legislation process. 

These delays in spectrum availability have contributed to Poland’s divergence from much of the rest of Europe in both the economic and technical dimensions of the 5G rollout. Until recently, Polish mobile operators exhibited lower capital intensity (they invested less of their revenue) compared to peers in other European countries. Most of their spending went into upgrading 4G sites and preparing for the 3G shutdown, instead of building a new 5G mid-band capacity layer or expanding 5G coverage using low-band (700 MHz) spectrum.

Orange's Rising Mobile Capex Reflects 5G Network Expansion
Analysis of Orange Poland accounts | 2020 – 2024

Analysis of financial data published by Orange, Poland’s largest mobile operator by subscriber count, confirms that the era of lower capital intensity (relative to elsewhere in Europe) is over. The recent spectrum auctions have triggered a new cycle of investment, with Orange doubling its mobile network spending in the past three years. Play has also rapidly increased its investment, as its French parent Iliad reported injecting record amounts into Play’s mobile infrastructure last year.

Play's Contribution to Capex in the Iliad Group Surges as 5G Buildout Ramps Up
Analysis of Iliad Group accounts | 2020 – 2024

On the technical side, meanwhile, Poland’s spectrum delay meant that three of the country’s four operators were forced to rely heavily on Dynamic Spectrum Sharing (DSS)—a technology that allows 4G and 5G to operate on the same band and adjust ‘dynamically’ to demand—in an effort to deliver early 5G coverage in the 2100 MHz band while awaiting spectrum auctions. This strategy resulted in Poland’s initial 5G performance more closely resembling those typical of 4G networks, as DSS deployments are typically based on a 10 MHz carrier where part of the capacity is still reserved for 4G signals, making 5G speeds with DSS around 15–25 % lower than if the band were dedicated solely to 5G.

The limitations of using DSS to deliver a “5G experience” were exemplified by the speed advantage maintained by Plus earlier in the 5G rollout. Importantly, Plus was the only Polish operator that did not rely on DSS and instead dedicated a full 40 MHz carrier in the 2600 MHz (TDD) band to 5G before mid-band spectrum became available at the start of last year. Prior to the 3.5 GHz band coming online, when the other operators were still wholly dependent on DSS for 5G coverage, Plus’s median 5G download speed of 133.34 Mbps was as much as 77 % higher than T-Mobile’s, 81 % higher than Orange’s, and 92 % higher than Play’s. 

Intense Mid-Band Deployment lifts Poland’s Regional 5G Competitiveness and Reshapes Operator Dynamics

Polish operators move from mid-band spectrum acquisition to mass commercial deployment in record time

The pent-up demand for mid-band spectrum in Poland was evident when mobile operators like Orange, T-Mobile, and Play launched commercial services just three months after acquiring mid-band spectrum, moving quickly from the auction in October 2023 to commercial launches by January 2024. T-Mobile reported that its mid-band 5G network already covered more than 25% of the Polish population by April 2024, with more than 2,100 sites active, while Orange announced it had reached 40% coverage by mid-June.

This rollout pace is exceptional by European standards and indicative of the increased pace of deployment possible later in the 5G technology cycle. It took Spain’s Telefónica (Movistar) about six months to reach its first 1,000 mid-band sites by comparison, and Germany’s operators needed around nine months to achieve the same milestone.

Plus's Spectrum Holdings in the 2600 MHz TDD Band Lend it a Decisive Capacity Lead

Each operator secured a contiguous 100 MHz block of spectrum in the 3.5 GHz band, which is widely regarded as optimal due to the large channel bandwidth this configuration affords. However, Plus has been notably slower to commercialise this allocation at scale. Plus’s earlier strategy of deploying 5G in the dedicated 2600 MHz band (rather than relying on DSS), alongside later using the 2100 MHz band as well, gave it more flexibility to delay a broad mid-band rollout as it previously enjoyed a significant 5G speed advantage over competitors while they were still heavily dependent on DSS deployments. 

Mid-band deployment shifts 5G performance rankings among Polish operators

Mass deployment of a new capacity layer by the other three operators has since decisively altered performance dynamics in the Polish market and eroded Plus’s lead. In the space of one year between Q1 2024 and Q1 2025, Plus has moved from market leader in median 5G download speed to laggard, becoming the only Polish operator to see a year-on-year decline in 5G speed, down 10%, indicating the increasing limitations of its 2600 MHz strategy. 

Orange and T-Mobile Pull Ahead in 5G Performance with Mid-Band Deployment
Speedtest Intelligence® | Q1 2023 – Q1 2025

By contrast, mid-band deployment has boosted performance across the rest of the market, with median 5G speeds rising by as much as 72% on Play, 86% on T-Mobile, and 90% on Orange between Q1 2024 and Q1 2025. While Orange led the Polish market in Q1 with a median 5G download speed of 222.11 Mbps, the operator’s lead has narrowed significantly as T-Mobile’s mid-band buildout has progressed, with T-Mobile now recording median 5G download speeds of 201.76 Mbps, well ahead of third- and fourth-placed Play (122.64 Mbps) and Plus (116.76 Mbps), respectively.

Plus's Lead in 5G Consistency Narrows as 2600 MHz Advantage Recedes with Mid-Band Deployment
Speedtest Intelligence® | Q1 2023 – Q1 2025

Despite losing its lead in median 5G download speed, Plus continues to lead at the 10th percentile (29.44 Mbps in Q1 2025), meaning subscribers in its lowest-performing areas still enjoy comparatively better speeds than those on rival networks. This advantage is likely linked to Plus’s lower dependence on DSS. However, T-Mobile (24.48 Mbps) and Orange (21.88 Mbps) are quickly closing the gap, with their 10th percentile 5G speeds now converging toward Plus. Plus’s 5G network consistency, measured as the proportion of Speedtest samples meeting a minimum download and upload threshold of 25/3 Mbps, has also declined over the past year, although it remains the market leader.

On upload performance, meanwhile, Play’s 5G network led the market in Q1 2025, recording median speeds of 19.33 Mbps, followed by Orange (18.99 Mbps), T-Mobile (17.32 Mbps), and Plus (14.96 Mbps). Unlike the substantial gains seen in download speeds, there is limited evidence so far that the mid-band rollout has materially improved upload performance, with median upload speeds about 6% lower in Q1 2025 compared to the same quarter last year. This discrepancy arises primarily because all four operators continue to deploy 5G in non-standalone (NSA) mode, requiring devices to transmit uplink traffic via existing 4G anchor bands. Consequently, the newly available 3.5 GHz spectrum enhances downlink capacity but leaves the congested 4G uplink path unchanged.

Play Develops Lead in 5G Upload Performance
Speedtest Intelligence® | Q1 2023 – Q1 2025

The operators’ investments in deploying a new 5G capacity layer have coincided with a broader RAN refresh effort, translating into improved quality of experience for users in key use cases such as video streaming and web browsing. Median web page load times on T-Mobile’s network, for instance, improved by around 4% between Q3 2024 and Q1 2025. Orange led in video metrics such as start time, resolution, and uninterrupted playback in the last quarter.

5G Drives QoE Improvements in Use Cases like Web Browsing
Speedtest Intelligence® | Q1 2025

Capital investment expands 5G coverage, but Poland’s rural-urban digital divide persists

While investments in DSS and the mid-band rollout have enabled Polish operators to make significant strides in 5G availability, which increased nationally from 28.5% in Q1 2024 to 43.1% in Q1 2025, regional coverage disparities continue to be a feature of the mobile network experience in Poland. Operators have prioritized 5G deployments in the richest and densest parts of Poland where fiber is heavily deployed, including the Masovian (Warsaw) and Pomeranian (Tri-City) provinces. In these provinces, 5G availability reached more than 40% by the end of last year and contributed to driving materially higher median download speeds than the national average. 

5G Availability Remains Highly Varied Across Poland Outside of Urbanized Areas
Speedtest Intelligence® | 5G Availability (%) in Q4 2024

By contrast, border provinces along the south and west of the country continue to experience much lower levels of 5G availability. Lubusz had the lowest availability (23.6% at the end of last year), where there is lower population density and lower subscriber spending, which reduces operators’ commercial incentives for widespread 5G investment. This trend has driven the development of a notable speed gap between provinces, with mobile subscribers in Lubusz also experiencing the lowest median download speeds (59.97 Mbps) in Poland, almost 33% below the leading Masovian province.

Mobile Download Speeds Are Lower in Less Urbanized Areas of Poland
Speedtest Intelligence® | Median Download Speed (Mbps) in Q4 2024

Mid-band deployment improves Poland’s mobile competitiveness, but 5G consistency continues to trail regional peers

From a regional competitiveness lens, intensive mid-band deployments have been successful in breaking Poland’s cycle of mobile network underperformance, with median 5G download speeds rising by over 50% on average to 160.30 Mbps between Q1 2024 and Q1 2025. This has propelled the country ahead of Czechia, Romania, and Slovakia for the first time in terms of 5G download speed performance.

Mid-Band Deployments Propel Poland's Regional Competitiveness
Speedtest Intelligence® | 2020 – 2025

Despite Poland’s  progress on its mid-band 5G rollout, the lingering effects of reliance on DSS and limited 5G spectrum diversity—up until the recent 700/800 MHz auction—mean that Poland continues to trail its regional peers in terms of 5G network consistency. In Q1 2025, 82% of Speedtest samples in Poland met the minimum 5G performance threshold for a consistent mobile experience, compared to 86% in Hungary, 89% in Romania, and 93% in Bulgaria.

Newfound spectrum diversity lends Polish operators potent tool to stimulate ARPU growth

Poland’s previous reliance on DSS, driven by limited 5G spectrum diversity, likely contributed to its slower average revenue per user (ARPU) growth compared to neighboring countries in recent years. Polish operators initially introduced tariffs with “5G at no extra cost” bolted onto existing 4G bundles, keeping prices flat to defend market share (and thereby maintaining depressed ARPU levels relative to regional peers). Combined with the external shock induced by markedly higher energy prices, stagnant ARPU levels created challenging operating conditions in the Polish market and weighed on operator profitability. 

Intense Priced-Based Competition Precipitated Revenue Erosion in Poland During the First Half of the 5G Cycle
Analysis of GSMA Intelligence Data | % Change in Mobile ARPU (Q1 2020 vs Q1 2023)

In neighboring markets, by contrast, operators were able to leverage mid-band spectrum deployments as both technical and marketing levers, shifting their strategies from price competition toward service-based differentiation. This enabled them to more effectively upsell premium speed tiers or monetize specific use cases, such as fixed wireless access (FWA), which dedicated mid-band 5G deployments uniquely support.

T-Mobile and Play Outpaced Rivals in Subscription Share Growth in Recent Years
Analysis of UKE Market Data | 2019 – 2023

Similarly, the delayed timing of Poland’s mid-band 5G auction likely dampened supply-side factors key for driving growth in mobile data traffic. Between Q1 2020 and Q4 2024, traffic volumes in neighboring Bulgaria converged with that in Poland for the first time, increasing by 4.8x vs. Poland’s 2.6x. Meanwhile, Bulgarian operators capitalized early on mid-band spectrum availability to aggressively promote competitive FWA solutions (a major driver of mobile traffic in developed markets) and to introduce cheap unlimited data tariffs with fewer usage restrictions.

Poland Maintains Regional Lead in Mobile Data Volumes, but Bulgaria is Catching Up
Analysis of GSMA Intelligence data | 2020 – 2024

Polish operators have since sought to replicate Bulgaria’s success by debuting distinct marketing for their mid-band 5G deployments to differentiate the newer mid-band 5G rollouts from earlier DSS-based 5G networks in terms of performance and user experience. T-Mobile has leaned on ‘5G More’ branding, while Plus has used ‘5G Ultra’ to indicate the additional performance gains unlocked by their new 5G networks in locations where dedicated mid-band spectrum is deployed. This strategy has formed part of a broader shift in the market, with all operators moving away from a hyper-focus on price competition and toward ‘more for more’ pricing strategies, supporting improved profitability and renewed ARPU growth in the market with inflation-linked tariffs.

Poland Has Led Regional ARPU Growth Since Mid-Band 5G Deployments Started
Analysis of GSMA Intelligence Data | % Change in Mobile ARPU (Q1 2023 vs Q1 2025)

Low-band activation and network sunset progress set to reinforce mid-band 5G gains

With Poland’s telecom regulator, UKE, having set among Europe’s most ambitious coverage obligations for recent mid- and low-band spectrum auctions, operators are unlikely to delay commercial deployments in the newly acquired 700 and 800 MHz bands. These deployments are expected to start next month and will be crucial for establishing a national 5G coverage layer that, for the first time, extends deep indoors and into rural areas. This expanded coverage will also support wider rollout of voice over LTE (VoLTE) services, accelerating the 3G sunset and freeing up additional spectrum in the 900 MHz band.

We will revisit shortly to assess how Polish operators are progressing with deploying their new low-band spectrum and how effectively it is complementing the ongoing 3G sunset.


Polska galopuje do odzyskania konkurencyjności 5G w Europie dzięki wdrożeniu średniego pasma częstotliwości

Polscy operatorzy przyśpieszyli z wdrażaniem 5G w średnim paśmie, próbując przejąć rosnący segment rynku premium.

Polska, która spóźniła się z przeprowadzeniem aukcji na średnie pasmo, w ostatnich latach pozostawała w tyle za swoimi europejskimi rówieśnikami w zakresie wdrażania 5G. Opóźnienie to odbiło się na globalnej konkurencyjności kraju pod względem wydajności sieci mobilnych i spowolniło postępy w realizacji sztandarowych celów Komisji Europejskiej w zakresie wdrażania 5G, które wymagają powszechnego zasięgu 5G w każdym państwie członkowskim UE do końca dekady.

Niniejszy artykuł analizuje stan polskiego rynku telefonii komórkowej i jego szerszą regionalną konkurencyjność 5G w kontekście trwających wdrożeń średniego pasma. Kolejny raport oceni długoterminowy wpływ komercjalizacji niedawno przyznanego niskiego pasma na potrzeby pokryciowe 5G.

Kluczowe wnioski:

  • Intensywne wydatki kapitałowe na wdrożenie średniego pasma napędzają znaczny wzrost wydajności 5G u polskich operatorów od pierwszego kwartału 2024 r., pozycjonując kraj przed regionalnych konkurentów w ciągu ostatniego roku. Mediana prędkości pobierania 5G w Polsce wzrosła o ponad 50% do 160,30 Mb/s w okresie od I kwartału 2024 r. do I kwartału 2025 r., w oparciu o dane Speedtest Intelligence®, dzięki czemu Polska po raz pierwszy wyprzedziła Czechy, Rumunię i Słowację pod względem wydajności 5G. Pomimo tego postępu, Polska nadal pozostaje w tyle za swoimi regionalnymi rówieśnikami pod względem spójności sieci 5G, która jest miarą tego, jak niezawodnie zestawione połączenie mobilne pozostaje “wystarczająco szybkie” do normalnego użytkowania.
  • T-Mobile i Orange przewyższają Play i Plus pod względem prędkości i wybranych wskaźników jakości doświadczenia usług (QoE). Różnice w strategiach, jak szybko i szeroko polscy operatorzy wdrożyli swoje aktywa widma w średnim paśmie, doprowadziły do rozbieżnego profilu rynku od pierwszego kwartału 2024 r., przy czym T-Mobile i Orange znacznie zwiększyły swoją przewagę w zakresie prędkości nad rywalami. Pomiędzy I kwartałem 2024 r. a I kwartałem 2025 r. mediana prędkości pobierania 5G wzrosła aż o 72% w Play (do 122,64 Mb/s), 86% w T-Mobile (do 201,76 Mb/s) i 90% w Orange (do 222,10 Mb/s) – przy jednoczesnym spadku o ponad 10% w Plusie (do 116,76 Mb/s).
  • Inwestycje sieciowe zwiększyły zasięg 5G w Polsce, ale nadal utrzymują się znaczne różnice regionalne. W ujęciu krajowym dostępność sieci 5G wzrosła z 28,5% w I kwartale 2024 r. do 43,1% w I kwartale 2025 r., co wynikało z dalszego wdrażania dynamicznego współdzielenia widma (DSS) i aktywacji widma w średnim paśmie, dzięki czemu Polska wyprzedziła pod względem dostępności sieci 5G regionalne kraje takie jak Bułgaria, Rumunia i Węgry. Niemniej jednak do IV kwartału 2024 r. utrzymywała się wyraźna luka w zasięgu między najlepiej i najgorzej obsługiwanymi województwami w kraju, przy czym dostępność 5G w zaludnionym województwie mazowieckim (47,2%) była dwukrotnie wyższa niż w województwie lubuskim (23,6%).
  • Wyłączenia sieci 3G (ang. “3G sunset”) powodują gwałtowny spadek czasu spędzonego na 3G w 2024 r., ponieważ polscy operatorzy reorganizują widmo dla 4G (ang. “refarming”), ale ma to ogromny wpływ na dostępność usług w miejscach mniej zurbanizowanych. Podczas gdy T-Mobile pozostał jedynym polskim operatorem, który w pełni zakończył proces wygaszania sieci 3G do pierwszego kwartału 2025 r., zarówno Orange, jak i Play czynią obecnie znaczne postępy w zakresie refarmingu widma 3G 900 MHz i 2100 MHz na potrzeby 4G. Czas spędzony na 3G spadł poniżej 3% dla obu operatorów do końca 2024 roku. Natomiast abonenci Plusa nadal spędzali znacznie więcej czasu w sieci 3G – 13,41% na koniec 2024 roku.

W ciągu ostatniego roku polscy operatorzy byli jednak zamknięci w intensywnym wyścigu, aby dogonić swoich regionalnych kolegów we wdrażaniu 5G, napędzanym przez rygorystyczne obowiązki w zakresie zasięgu nałożone przez polskiego regulatora telekomunikacyjnego (UKE), falę wsparcia finansowego z Brukseli i rosnące dążenie do konkurowania o większy udział w poszerzającym się segmencie rynku premium w kraju, w którym wydajność sieci stała się kluczowym wyróżnikiem konkurencyjnym.

Polski rynek telefonii komórkowej jest dziś zdominowany aktywnością wdrożeniową, stąd operatorzy zwiększają wydatki kapitałowe do najwyższych poziomów od lat, aby wyposażyć tysiące stacji bazowych w widmo średniego pasma, przyspieszyć wyłączanie sieci 3G i położyć podwaliny pod uruchomienie samodzielnej sieci 5G (SA) w nadchodzących latach. Taką falę aktywności można zwłaszcza zauważyć po zakończeniu aukcji 700/800 MHz pod koniec marca tego roku, w której wszyscy polscy operatorzy po raz pierwszy zabezpieczyli widmo 5G w niskim paśmie – torując sobie drogę do poprawy zasięgu 5G na obszarach wiejskich i głęboko wewnątrz budynków (ang. “deep in-building”) w miastach oraz uzupełniając krajowe plany udostępniania widma 5G.

Podczas gdy wydatki kapitałowe na 5G spowolniły w dużej części Europy, Polska doświadcza inną dynamikę ze względu na późne aukcje na częstotliwości

Polska znacznie spóźniła się z udostępnieniem dedykowanych częstotliwości 5G w “pionierskich” pasmach zidentyfikowanych przez Komisję Europejską jako krytyczne dla terminowej komercjalizacji i wdrożenia 5G w państwach członkowskich UE. Krajowa aukcja częstotliwości pasma środkowego (3,6 GHz), początkowo planowana na połowę 2020 r., była wielokrotnie opóźniona – o ponad trzy lata – z powodu pandemii i przedłużającego się procesu legislacyjnego w zakresie bezpieczeństwa.

Te opóźnienia w dostępności częstotliwości przyczyniły się do tego, że Polska odbiega od reszty Europy zarówno w wymiarze ekonomicznym, jak i technicznym wdrażania 5G. Do niedawna polscy operatorzy komórkowi wykazywali niższą kapitałochłonność (inwestowali mniejszą część swoich przychodów) w porównaniu do innych europejskich operatorów. Większość ich wydatków przeznaczono na modernizację 4G i przygotowanie do wyłączenia 3G, zamiast budować nową warstwę pojemności 5G w średnim paśmie lub rozszerzać zasięg 5G przy użyciu niskich częstotliwości (700 MHz).

Rosnące nakłady Orange na sieć mobilną odzwierciedlają rozwój sieci 5G
Analiza rachunków Orange Polska | 2020–2024

Analiza danych finansowych opublikowanych przez Orange, największego operatora komórkowego w Polsce pod względem liczby abonentów, potwierdza, że era niższej kapitałochłonności (w porównaniu z innymi krajami w Europie) dobiegła końca. Niedawne aukcje częstotliwości wywołały nowy cykl inwestycyjny, a Orange podwoił wydatki na sieć mobilną w ciągu ostatnich trzech lat. Play również gwałtownie zwiększył swoje inwestycje, jego francuska spółka dominująca Iliad poinformowała w zeszłym roku o zainwestowaniu rekordowych kwot w infrastrukturę mobilną Play.

Udział Play w nakładach inwestycyjnych Grupy Iliad gwałtownie rośnie wraz z przyspieszeniem rozbudowy sieci 5G
Analiza rachunków Grupy Iliad | 2020–2024

Tymczasem od strony technicznej opóźnienie aukcji częstotliwości 5G w Polsce oznaczało, że trzech z czterech operatorów w kraju było zmuszonych w dużym stopniu polegać na dynamicznym współdzieleniu widma (ang. “Dynamic Spectrum Sharing” – DSS) – technologii, która pozwala 4G i 5G działać w tym samym paśmie i “dynamicznie” dostosowywać się do zapotrzebowania na pojemność danej technologii – w celu zapewnienia wczesnego zasięgu 5G w paśmie 2100 MHz w oczekiwaniu na aukcje częstotliwości. Strategia ta spowodowała, że początkowa wydajność 5G w Polsce bardziej przypominała typową dla sieci 4G, ponieważ wdrożenia DSS są zwykle oparte na nośnej 10 MHz, w której część pojemności jest nadal zarezerwowana dla sygnałów 4G, co powoduje, że prędkości 5G z DSS są o około 15-25% niższe niż gdyby pasmo było przeznaczone wyłącznie dla 5G.

Ograniczenia wykorzystania DSS do zapewnienia “doświadczenia 5G” zostały zilustrowane przewagą prędkości utrzymywaną przez Plusa na wcześniejszym etapie wdrażania 5G. Co ważne, Plus był jedynym polskim operatorem, który nie polegał na DSS i zamiast tego przeznaczył pełną nośną 40 MHz w paśmie 2600 MHz (TDD) na 5G, zanim na początku ubiegłego roku częstotliwości średniego pasma stały się dostępne. Przed uruchomieniem pasma 3,5 GHz, gdy pozostali operatorzy byli nadal w pełni zależni od DSS w zakresie zasięgu 5G, średnia prędkość pobierania 5G Plusa wynosząca 133,34 Mb/s była aż o 77% wyższa niż w T-Mobile, 81% wyższa niż w Orange i 92% wyższa niż w Play.

Intensywne wdrażanie średniego pasma podnosi regionalną konkurencyjność Polski w zakresie 5G i zmienia dynamikę operatorów

Polscy operatorzy w rekordowym czasie przechodzą od zakupu częstotliwości w średnim paśmie do masowego wdrożenia komercyjnego

Stłumiony popyt na częstotliwości średniego pasma w Polsce był widoczny, gdy operatorzy komórkowi, tacy jak Orange, T-Mobile i Play, uruchomili usługi komercyjne zaledwie trzy miesiące po nabyciu częstotliwości średniego pasma, szybko przechodząc od aukcji w październiku 2023 r. do komercyjnego uruchomienia do stycznia 2024 roku. T-Mobile poinformował, że jego średniopasmowa sieć 5G obejmowała już ponad 25% populacji Polski do kwietnia 2024 r., z ponad 2100 aktywnymi stacjami bazowymi, podczas gdy Orange ogłosił, że osiągnął 40% zasięgu do połowy czerwca.

To tempo wdrażania jest wyjątkowe jak na standardy europejskie i wskazuje na zwiększone tempo wdrażania możliwe w późniejszym okresie cyklu technologicznego 5G. Dla porównania, hiszpańska Telefónica (Movistar) potrzebowała około sześciu miesięcy, aby osiągnąć pierwsze 1000 stacji bazowych w średnim paśmie, a niemieccy operatorzy potrzebowali około dziewięciu miesięcy, aby osiągnąć ten sam kamień milowy.

Zasoby częstotliwości Plus w paśmie 2600 MHz TDD zapewniają mu zdecydowaną przewagę przepustowości

Każdy z operatorów zabezpieczył ciągły blok częstotliwości o szerokości 100 MHz w paśmie 3,5 GHz, który jest powszechnie wykorzystywany. Jednak Plus był znacznie wolniejszy w komercjalizacji tej alokacji na dużą skalę. Wcześniejsza strategia Plusa polegająca na wdrażaniu 5G w dedykowanym paśmie 2600 MHz (zamiast polegać na DSS), a później także na wykorzystaniu pasma 2100 MHz, dała mu większą elastyczność w opóźnianiu szerokiego wdrożenia średniego pasma, ponieważ wcześniej cieszył się znaczną przewagą prędkości 5G nad konkurentami, podczas gdy byli oni nadal silnie uzależnieni od wdrożeń DSS.

Wdrożenie średniego pasma zmienia rankingi wydajności 5G wśród polskich operatorów

Masowe wdrożenie nowej warstwy pojemności przez pozostałych trzech operatorów zdecydowanie zmieniło dynamikę wydajności 5G na polskim rynku i zmniejszyło przewagę Plusa. W ciągu jednego roku, między pierwszym kwartałem 2024 r. a pierwszym kwartałem 2025 r., Plus przesunął się z lidera rynku pod względem mediany prędkości pobierania 5G do jednego z wolniejszych, stając się jedynym polskim operatorem, który odnotował spadek prędkości 5G rok do roku, o 10%, co wskazuje na rosnące ograniczenia jego strategii 2600 MHz.

Orange i T-Mobile zyskują przewagę w wydajności 5G dzięki wdrożeniu pasma średniego
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Z kolei wdrożenie średniego pasma zwiększyło wydajność na pozostałej części rynku, a mediana prędkości 5G wzrosła aż o 72% w Play, 86% w T-Mobile i 90% w Orange między 1. kwartałem 2024 r. a 1. kwartałem 2025 r. Podczas gdy Orange był liderem polskiego rynku w pierwszym kwartale ze średnią prędkością pobierania 5G wynoszącą 222,11 Mb/s, przewaga operatora znacznie się zmniejszyła wraz z postępem budowy średniego pasma T-Mobile, przy czym T-Mobile odnotowuje obecnie medianę prędkości pobierania 5G na poziomie 201,76 Mb/s, znacznie wyprzedzając odpowiednio trzeciego i czwartego Play (122,64 Mb/s) i Plusa (116,76 Mb/s).

Przewaga Plusa w spójności 5G maleje, gdy przewaga pasma 2600 MHz ustępuje wraz z wdrożeniem pasma średniego
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Pomimo utraty pozycji lidera pod względem mediany prędkości pobierania 5G, Plus nadal prowadzi w 10. percentylu (29,44 Mb/s w 1. kwartale 2025 r.), co oznacza, że abonenci w obszarach o najniższych wynikach nadal cieszą się stosunkowo lepszymi prędkościami niż abonenci konkurencyjnych sieci. Przewaga ta jest prawdopodobnie związana z mniejszą zależnością Plusa od DSS. Jednak T-Mobile (24,48 Mb/s) i Orange (21,88 Mb/s) szybko zmniejszają lukę, a ich 10-procentowe prędkości 5G zbliżają się teraz do Plusa. Spójność sieci 5G Plusa, mierzona jako odsetek próbek Speedtest spełniających minimalny próg pobierania i wysyłania 25/3 Mbps, również spadła w ciągu ostatniego roku, chociaż pozostaje liderem rynku.

Tymczasem pod względem wydajności wysyłania, sieć 5G Play była liderem na rynku w pierwszym kwartale 2025 r., odnotowując medianę prędkości 19,33 Mb/s, a następnie Orange (18,99 Mb/s), T-Mobile (17,32 Mb/s) i Plus (14,96 Mb/s).

W przeciwieństwie do znacznych wzrostów prędkości pobierania, jak dotąd istnieją ograniczone dowody na to, że wdrożenie średniego pasma znacznie poprawiło wydajność wysyłania, przy czym mediana prędkości wysyłania była o około 6% niższa w pierwszym kwartale 2025 r. w porównaniu z tym samym kwartałem ubiegłego roku. Rozbieżność ta wynika przede wszystkim z faktu, że wszyscy czterej operatorzy nadal wdrażają 5G w trybie non-standalone (NSA), nadal wymagają od urządzeń technologii 4G do obsługi ruchu wysyłania i warstwy sygnałowej. W związku z tym nowo dostępne widmo 3,5 GHz zwiększa przepustowość łącza w dół, ale pozostawia zatłoczoną ścieżkę łącza 4G w górę bez zmian.

Play zyskuje przewagę w wydajności wysyłania danych w sieci 5G
Speedtest Intelligence® | I kwartał 2023 – I kwartał 2025

Inwestycje operatorów we wdrażanie nowej warstwy przepustowości 5G zbiegły się w czasie z szerszymi działaniami w zakresie modernizacji sieci RAN, przekładając się na lepszą jakość usług doświadczanych przez użytkowników w kluczowych zastosowaniach, takich jak wideo streaming i przeglądanie stron internetowych. Na przykład mediana czasu ładowania strony internetowej w sieci T-Mobile poprawiła się o około 4% między 3. kwartałem 2024 r. a 1. kwartałem 2025 r., co stawia ją w czołówce pod tym względem. Tymczasem Orange był liderem pod względem wskaźników wideo, takich jak czas rozpoczęcia, rozdzielczość i nieprzerwane odtwarzanie w ostatnim kwartale.

5G napędza poprawę jakości doświadczeń (QoE) w zastosowaniach takich jak przeglądanie stron internetowych
Speedtest Intelligence® | I kwartał 2025

Inwestycje kapitałowe zwiększają zasięg 5G, ale przepaść cyfrowa między wsią a miastem w Polsce utrzymuje się

Podczas gdy inwestycje w DSS i wdrożenie średniego pasma umożliwiły polskim operatorom poczynienie znaczących postępów w zakresie dostępności 5G, która wzrosła w skali kraju z 28,5% w I kwartale 2024 r. do 43,1% w I kwartale 2025 r., regionalne różnice w zasięgu nadal są cechą charakterystyczną sieci mobilnej w Polsce.

Operatorzy nadali priorytet wdrożeniom 5G w najbogatszych i najbardziej zaludnionych częściach Polski, gdzie światłowody są mocno rozwinięte, w tym w województwach mazowieckim (Warszawa) i pomorskim (Trójmiasto). W tych województwach dostępność 5G osiągnęła ponad 40% pod koniec ubiegłego roku i przyczyniła się do osiągnięcia znacznie wyższych średnich prędkości pobierania niż średnia krajowa.

Dostępność 5G pozostaje wysoce zróżnicowana w Polsce poza obszarami zurbanizowanymi
Speedtest Intelligence® | Dostępność 5G (%) w IV kw. 2024

Natomiast województwa przygraniczne na południu i zachodzie kraju nadal doświadczają znacznie niższych poziomów dostępności 5G. Województwo lubuskie miało najniższą dostępność (23,6% na koniec ubiegłego roku), gdzie występuje mniejsza gęstość zaludnienia i niższe wydatki abonentów, co zmniejsza zachęty komercyjne operatorów do powszechnych inwestycji w 5G. Tendencja ta doprowadziła do powstania znacznej luki prędkości między województwami, a abonenci mobilni w Lubuskiem również doświadczają najniższej mediany prędkości pobierania (59,97 Mb/s) w Polsce, prawie 33% poniżej wiodącego województwa mazowieckiego.

Prędkości pobierania w sieciach mobilnych są niższe na mniej zurbanizowanych obszarach Polski
Speedtest Intelligence® | Mediana prędkości pobierania (Mbps) w IV kw. 2024

Wdrożenie średniego pasma poprawia konkurencyjność mobilną Polski, ale spójność 5G nadal ustępuje regionalnym konkurentom

Z punktu widzenia konkurencyjności regionalnej, intensywne wdrożenia średniego pasma skutecznie przełamały cykl słabej wydajności sieci mobilnej w Polsce, a mediana prędkości pobierania 5G wzrosła średnio o ponad 50% do 160,30 Mb/s między 1. kwartałem 2024 r. a 1. kwartałem 2025 r. Dzięki temu Polska po raz pierwszy wyprzedziła Czechy, Rumunię i Słowację pod względem prędkości pobierania 5G.

Wdrożenia pasma średniego napędzają regionalną konkurencyjność Polski
Speedtest Intelligence® | 2020–2025

Pomimo postępów Polski we wdrażaniu 5G w średnim paśmie, utrzymujące się skutki polegania na DSS i ograniczonej różnorodności widma 5G aż do niedawnej aukcji 700/800 MHz oznaczają, że Polska nadal pozostaje w tyle za swoimi regionalnymi rówieśnikami pod względem spójności sieci 5G. W pierwszym kwartale 2025 r. 82% próbek Speedtest w Polsce spełniło minimalny próg wydajności 5G dla spójnego doświadczenia mobilnego, w porównaniu do 86% na Węgrzech, 89% w Rumunii i 93% w Bułgarii.

Nowo pozyskana różnorodność częstotliwości 5G daje polskim operatorom potężne narzędzie do stymulowania wzrostu ARPU

Wcześniejsza zależność Polski od DSS, wynikająca z ograniczonej różnorodności widma 5G, prawdopodobnie przyczyniła się do wolniejszego wzrostu średniego przychodu na użytkownika (ARPU) w porównaniu z sąsiednimi krajami na przestrzeni ostatnich lat. Polscy operatorzy początkowo wprowadzili taryfy z “5G bez dodatkowych kosztów” dodane do istniejących pakietów 4G, utrzymując ceny na stałym poziomie w celu obrony udziału w rynku (a tym samym utrzymując obniżone poziomy ARPU w porównaniu do regionalnych konkurentów). W połączeniu z zewnętrznym szokiem makroekonomicznym wywołanym znacznie wyższymi cenami energii, stagnacja poziomów ARPU stworzyła trudne warunki operacyjne na polskim rynku i wpłynęła na rentowność operatorów.

Intensywna konkurencja cenowa spowodowała erozję przychodów w Polsce w pierwszej połowie cyklu 5G
Analiza danych GSMA Intelligence | Zmiana procentowa ARPU w usługach mobilnych (I kw. 2020 vs I kw. 2023)

Z kolei na sąsiednich rynkach operatorzy byli w stanie wykorzystać wdrożenie częstotliwości w średnim paśmie zarówno jako korzyści techniczne, jak i marketingowe, przenosząc swoje strategie z konkurencji cenowej na zróżnicowanie oparte na usługach. Pozwoliło im to skuteczniej sprzedawać wyższe poziomy prędkości lub zarabiać na konkretnych rozwiązaniach, takich jak stały dostęp bezprzewodowy (FWA), dla którego działania wdrożone 5G w średnim paśmie nadaje się idealnie.

T-Mobile i Play wyprzedziły konkurentów w tempie wzrostu udziału subskrypcji w ostatnich latach
Analiza danych rynkowych UKE | 2019–2023

Podobnie, opóźniony termin polskiej aukcji 5G dla średniego pasma prawdopodobnie osłabił czynniki po stronie podaży, będące kluczowymi dla napędzania wzrostu konsumpcji danych z sieci mobilnych. W okresie od I kwartału 2020 r. do IV kwartału 2024 r. wolumen ruchu w sąsiedniej Bułgarii po raz pierwszy zrównał się z wolumenem w Polsce, wzrastając 4,8-krotnie w porównaniu do 2,6-krotnego wzrostu w Polsce.

W międzyczasie bułgarscy operatorzy wcześnie wykorzystali dostępność widma w średnim paśmie, aby agresywnie promować konkurencyjne rozwiązania FWA (główny czynnik napędzający ruch mobilny na rynkach rozwiniętych) i wprowadzić tanie taryfy nieograniczonej transmisji danych z mniejszymi ograniczeniami użytkowania.

Polska utrzymuje regionalne prowadzenie w wolumenach danych mobilnych, ale Bułgaria szybko nadrabia
Analiza danych GSMA Intelligence | 2020–2024

Od tego czasu polscy operatorzy starali się powtórzyć sukces Bułgarii, wprowadzając odrębny marketing dla swoich wdrożeń 5G w średnim paśmie, aby odróżnić nowsze wdrożenia 5G w średnim paśmie od wcześniejszych. T-Mobile oparł się na marce “5G Bardziej”, podczas gdy Plus użył sloganu marketingowego “5G Ultra”, aby wskazać dodatkowy wzrost wydajności odblokowany przez ich nowe sieci 5G w lokalizacjach, w których wdrożono dedykowane częstotliwości średniego pasma. Strategia ta stała się częścią szerszej zmiany na rynku, w której wszyscy operatorzy odchodzą od hiper-koncentracji opierającej się na konkurencji cenowej w kierunku strategii cenowych “więcej za więcej”, wspierając poprawę rentowności i ponowny wzrost ARPU.

Polska przoduje w regionalnym wzroście ARPU od momentu rozpoczęcia wdrożeń średniego pasma 5G
Analiza danych GSMA Intelligence | Zmiana procentowa ARPU w usługach mobilnych (I kw. 2023 vs I kw. 2025)

Aktywacja niskiego pasma i postępy w budowie sieci mają na celu wzmocnienie zysków 5G w średnim paśmie

W związku z tym, że polski regulator telekomunikacyjny, UKE, ustanowił jeden z najbardziej ambitnych zobowiązań dotyczących zasięgu w Europie dla ostatnich aukcji częstotliwości średniego i niskiego pasma, operatorzy raczej nie opóźnią komercyjnych wdrożeń w nowo nabytych pasmach 700 i 800 MHz. Oczekuje się, że wdrożenia te rozpoczną się w przyszłym miesiącu i będą miały kluczowe znaczenie dla ustanowienia krajowej warstwy zasięgu 5G, która znacznie poprawi pokrycie ciężko dostępnych miejsc wewnątrz budynków w miastach i zdalnych obszarów wiejskich. Rozszerzony zasięg będzie również wspierał szersze wdrażanie usług głosowych przez LTE (VoLTE), przyspieszając schyłek 3G i uwalniając dodatkowe widmo w paśmie 900 MHz.

Wkrótce powrócimy do tego tematu, aby ocenić, jak polscy operatorzy radzą sobie z wdrażaniem nowych częstotliwości niskopasmowych i jak skutecznie uzupełniają trwający proces wygaszania 3G.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| June 30, 2025

Starlink Elevates In-Flight Wi-Fi Performance

Airlines are using in-flight connectivity to differentiate their service and create brand value

Just as hotels have progressively integrated Wi-Fi connectivity as a standard amenity for their guests, in-flight Wi-Fi is transitioning from a novelty to a convenience to an expected service.

Reflecting this increasing expectation, the American Customer Satisfaction Index (ACSI) this year incorporated “Quality of in-flight Wi-Fi” into its benchmarks for the airline industry. In-flight Wi-Fi placed 21st out of the 21 benchmarks, ranking lower than baggage handling, seat comfort, and even airline food.

To assess this performance, we analyzed our Speedtest data collected during Q1 2025. We examined performance for individual airlines and for in-flight connectivity service providers.

KEY TAKEAWAYS:

  • In-flight Wi-Fi for the majority of users compares very poorly with their experience on terrestrial networks
  • Hawaiian Airlines and Qatar Airways stand out as the best performing airlines based on our data
  • Starlink’s low-earth orbit (LEO) satellite constellation drives performance for leading airline Wi-Fi
  • Expect airlines to ramp up their efforts — in-flight connectivity can be a key point of differentiation for travelers, helps support the premium brand value that many international airlines aspire to create, and is an opportunity to monetize a literally captive audience

Airline In-Flight Wi-Fi Performance – Download / Upload / Latency

In-flight Wi-Fi Speed and Latency Performance by Airline
Speedtest data, Q1 2025, airlines sorted by median

Hawaiian Airlines and Qatar Airways use Starlink’s low-Earth orbit (LEO) satellite constellation to deliver their inflight Wi-Fi, resulting in download speeds and upload speeds and latency that are better than the other airlines.

Many other airlines are also providing very usable speeds. Spirit Airlines, Air Canada, Delta Airlines, Breeze Airlines, American Airlines and Aeromexico all provide 10th percentile (where 90% of the results are faster) download speeds above 10 megabits per second (Mbps) and very respectable median download speeds. Furthermore, upload speeds on most of these airlines tend to support basic uplink connectivity needs like emailing. However, when the upload speed is observed alongside the many high-latency results, real-time uses like gaming or video calling are likely not possible (to the relief of all other passengers).

Lufthansa, at the other end of the download speed ranking, is limited by the Deutsche Telekom LTE ground-to-air network. While Lufthansa may offer other connectivity options, our data shows a significant number of its passengers are still connecting via this poorer-performing service.

Likewise, given the premium brand reputation of carriers like Japan Airlines, Turkish Airlines, and Cathay Pacific, they likely offer better-performing connectivity services on other aircraft. However, as with Lufthansa, our data reveals that a notable portion of their passengers are still encountering a substandard Wi-Fi experience.

Qatar Airways presents additional insight as, along with Starlink as one of its connectivity service providers, it also operates planes with geo-stationary orbit GEO connectivity. This is most evident in the multiserver latency results. While Qatar’s median latency is similar to Hawaiian Airlines, its 10th percentile (the laggiest experience) is much higher, keeping it in the company of other GEO-supported airlines.

Connectivity Service Providers

In our Speedtest samples of in-flight connectivity service providers we collect a mix of GEO, LEO, medium earth orbit (MEO), multi-orbit / hybrid network providers, and even ground-based LTE.  Furthermore, the category includes satellite service integrators. These integrators do not own or operate their own satellite constellations. Instead they partner with satellite operators for capacity while managing the business relationship with the airline, including installing and managing the in-flight connectivity system on the aircraft.

In-flight Connectivity Service Providers and Associated Airlines

Deutsche TelekomAir France, Cathay Pacific, Condor, Lufthansa
Hughes (SES)Spirit Airlines
Inmarsat (Viasat)Air New Zealand, Qatar Airways
IntelsatAir Canada, Alaska Airlines, American Airlines, United Airlines
MTN Satellite CommunicationsSouthwest Airlines
Nelco (PAC/Intelsat)Air India
Panasonic Avionics CorporationAer Lingus, Air France, American Airlines, ANA, Asiana Airlines, British Airways, Etihad Airways, EVA Air, Fiji Airways, Finnair, Iberia Airlines, ITA Airways, Japan Airlines, KLM, Korean Air, Malaysian Airlines, Scandinavian Airlines, Singapore Airlines, SWISS Airlines, TAP Air Portugal, Thai Airlines, United Airlines, Virgin Atlantic, VoeAzul, WestJet, Zipair Tokyo
SITA SwitzerlandQatar Airways
SpaceX StarlinkHawaiian Airlines, Qatar Airways
Türk TelekomTurkish Airlines
ViasatAeromexico, American Airlines, Breeze Airlines, Delta Airlines, EL AL Airlines, Icelandair, JetBlue, Southwest Airlines, United Airlines, Virgin Atlantic
* Based on Speedtest data samples, Q1 2025; not based on active or announced partnerships
  • Deutsche Telekom is in the European Aviation Network, a hybrid network that combines a GEO satellite from Viasat/Inmarsat with a ground-based LTE network across Europe. 
  • Hughes, an EchoStar company, provides GEO satellite internet for consumers and enterprises. In late 2022 it began offering “Hughes Fusion,” a multi-orbit in-flight connectivity solution that can simultaneously communicate with both GEO and LEO satellites. Hughes frequently collaborates with European satellite operator SES, a GEO and MEO provider.
  • Intelsat provides in-flight connectivity through its fleet of GEO satellites and offers a multi-orbit solution that combines its GEO network with access to a LEO constellation. Intelsat is in the process of being acquired by SES.
  • MTN Satellite Communications, primarily known for its services in the maritime and remote land-based sectors, also provides in-flight connectivity. The company leverages capacity from various satellite operators across different orbits, both GEO and LEO.
  • Nelco, a Tata Group enterprise, has partnered with Intelsat to offer its GEO-based connectivity services to airlines operating in Indian airspace. 
  • Panasonic Avionics Corporation (PAC) – a provider of in-flight entertainment and connectivity systems, does not operate its own satellite constellation. Instead, it partners with various satellite operators, including those with GEO and LEO networks (eg, Eutelsat OneWeb), to offer multi-orbit connectivity service to airline customers.
  • SITA Switzerland, a multinational information technology company, partners with satellite network operators, to deliver passenger broadband.
  • SpaceX Starlink is rapidly expanding its LEO satellite network, offering high-speed, low-latency internet service to airlines, and is being adopted by several carriers.
  • Türk Telekom has been providing in-flight connectivity through partnerships including Panasonic Avionics.
  • Viasat operates a constellation of high-capacity GEO satellites. Its services are used by numerous airlines globally. Viasat acquired Inmarsat, another GEO satellite network, in May 2023.

Connectivity Service Provider In-Flight Wi-Fi Performance – Download / Upload / Latency

In-flight Wi-Fi Speed and Latency Performance by Connectivity Service Provider
Speedtest data, Q1 2025, provider sorted by median

The advantages of its dense LEO constellation compared to the GEOs make SpaceX’s Starlink the clear standout in speeds and latency. Its medians are 152.37 Mbps download speed, 24.16 Mbps upload speed, and 44 milliseconds (ms) multi-server latency.

Hughes and Intelsat, with their multi-orbit offering, deliver solid median download speeds – 84.55 Mbps and 61.61 Mbps, respectively. Viasat performs well on download speed, too, at 50.38 Mbps, given it is a GEO provider. 

On the other end of the scale, the LTE ground network of Deutsche Telekom delivers a minimally usable median download speed of 4.14 Mbps. Passengers on these flights may have access to GEO services (which, for example, we see in our data with Air France, though not in sufficient sample size to include in this article), but, as stated above, given we record Speedtest samples on Deutsche Telekom means that passengers are connecting with very slow internet speeds.

Looking more closely at slower download speeds, the 10th percentile reveals a similar pattern to the median, with Starlink still performing well at 65.31 Mbps, and Hughes and Viasat still managing usable download speeds of 28.29 Mbps and 12.78 Mbps, respectively. The rest of the provider speeds tail off and down into the single-digit Mbps, and raises a question: is it the satellite constellation capacity or the onboard Wi-Fi technology (or both) that is the limiting factor? The question of onboard Wi-Fi technology is taken up in the conclusion to this research article.

Examining the uplink, besides Starlink at 24.16 Mbps, only Intelsat provides adequate median upload speeds at 9.96 Mbps. Next, Panasonic Avionics, Turk Telekom (also PAC) and Nelco (also PAC) neatly cluster – 3.65, 3.40 and 2.60 Mbps, respectively – followed by Deutsche Telekom at 2.53 Mbps.

Latency is the starkest separation between LEO and GEO, which is obvious given the orbital altitude differences in distance between them is roughly 60 times or more. Bearing this in mind, Starlink’s median multiserver latency of 44 ms would otherwise seem an outlier compared with all other providers, ranging from 667 ms to 839 ms.

Nowhere to go but up

In-flight connectivity isn’t seamless. Depending on airline routes or models of airplanes, different connectivity service providers may be used (or occasionally restricted by governments when crossing over certain territories). Moreover, old equipment on and in the airplanes takes time and expense to upgrade.

However, the upgrades are happening as many airlines see value and opportunity to provide extended services, along with better Wi-FI. For example, United Airlines is not just moving its entire fleet to Starlink for better performance, but also to deepen its customer loyalty relationships. “Access will be free for all MileagePlus customers and includes game-changing inflight entertainment experiences like streaming services, shopping, gaming and more.” SAS is also working with Starlink to enhance its “gate-to-gate” connectivity and offer free high-speed Wi-Fi by the end of this year.

Not all airlines are selecting Starlink. Also announced this year, American Airlines has aligned itself with Viasat and Intelsat, while Delta has gotten on board with Viasat and Hughes, deplaning Intelsat.

Another example of improvement, this time inside the airplane, is Panasonic Avionics offering Wi-Fi 6E. Wi-Fi 6E adds the 6 GHz frequency band to prior Wi-Fi generations (that offered 2.4 GHz and 5 GHz), which has more channels and less interference than older Wi-Fi devices. 

Finally, competition is heating up. The likes of Project Kuiper and, perhaps, AST SpaceMobile will add new LEO options, where we see the leading LEO Starlink performing very well in our Speedtest data. Intention to provide “direct-to-device” connectivity to wireless customers from the mobile network operators, helps support the scale of the capital-intensive business case for launching rockets and orbiting satellites.

Watch this space

We will be revisiting this topic soon with updated information and insights. If you are an airline or an in-flight connectivity service provider, we’d like to hear from you to ensure we’re capturing and reflecting your passengers’ Wi-Fi connection experience.

Ookla assists ISPs, venue owners, and companies in designing Wi-Fi networks, monitoring their performance, and optimizing them. Please contact us to learn more about Speedtest Intelligence and Ekahau.


Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| June 11, 2025

Wi-Fi 7 Speeds Up in the U.S.

Cable has the fastest-growing Wi-Fi 7, but Fiber has the fastest Wi-Fi 7 speeds

Editor’s note: This article was revised on June 12 to reflect that Verizon’s median download speeds are a result of its rate plans and for clarity about cable technology.

Wi-Fi 7 has been around for over a year. If you haven’t noticed this latest generation of Wi-Fi technology, it might be because it is still just gaining a foothold. But even for those who haven’t yet heard of Wi-Fi 7, one can surmise that a new technology generation will have better performance than what’s come before. This article looks at the growth of Wi-Fi 7 in the United States, then compares its performance against prior Wi-Fi generations across top fixed internet service providers (ISP).

Key Takeaways:

  • Wi-Fi 7 adoption is less than 2%, according to its share of fixed samples of Speedtest user data. ISPs are beginning to include Wi-Fi 7 routers in their service bundle, which is the primary means for households to acquire routers.
  • Wi-Fi 7 speed is faster, as expected, even delivering gig-speed for one fiber ISP. However, cable providers, which are competitive with fiber speeds on the downlink, have much slower uplink speeds and more lag on latency. Cable companies have 30% more of the older Wi-Fi 4 and 5 routers than fiber companies, constraining the potential customer experience.
  • Net Promoter Score (NPS) improves with each generation of Wi-Fi, with an immense gulf from -38 for Wi-Fi 4 to +45 for Wi-Fi 7.

Wi-Fi in the U.S. by Technology Standard and the Growth of Wi-Fi 7

Wi-Fi Generations Mix
Speedtest Intelligence data, United States, Q1 2025

Generation breakdown:

  • Wi-Fi 4 (802.11n), introduced in 2009, hangs onto 13.0% of Speedtest user samples
  • Wi-Fi 5 (802.11ac) arrived in 2013 and registers a 33.0% share
  • Wi-Fi 6 (802.11ax) came to market in 2019 and 6E (also 802.11ax) added in early 2021 together account for a majority 52.3% share
  • Wi-Fi 7 (802.11be) came along early in 2024 and has garnered just 1.8% through Q1 2025

[NB: 6 and 6E are the same IEEE standard. 6E in this article is 6 GHz only, to allow for discrete analysis of this spectrum band. Wi-Fi 6E router samples on 2.4 GHz or 5 GHz are included with Wi-Fi 6. PC Mag explains.]

Wi-Fi 7’s Early Shoots

Wi-Fi 7 Speedtest user samples as share of total Wi-Fi Speedtest samples, Speedtest Intelligence data:

Q1 2024Q2 2024Q3 2024Q4 2024Q1 2025
0.2%0.3%0.5%0.8%1.8%

Wi-Fi 7 adoption started slowly and was less than 1% share through all of 2024, but then it more than doubled in Q1 2025 vs. Q4 2024, as more providers began offering Wi-Fi 7 routers as part of the service bundle. The role of ISPs providing equipment is critical. Seventy-one percent (71%) of internet households in the U.S. get their routers from their ISP, according to recent research from Parks Associates. For example, Spectrum (Charter Communications) began offering its Wi-Fi 7 router late last year and tripled its adoption over these two quarters, allowing the company to claim that it is the fastest growing Wi-Fi 7 provider as of Q1 2025.

The ISPs listed in the chart are the ten largest Wi-Fi 7 providers in Speedtest Intelligence data based on total Speedtest user samples on Wi-Fi 7.

Wi-Fi Performance by Generation

Median Download Speeds (Mbps), All and Top 10 Fixed Providers
Speedtest Intelligence data, United States, Q1 2025

For all providers, the increase in median download speed for each Wi-Fi generation is expected. At the top end, Wi-Fi 7 at 764.15 Mbps, even with Wi-Fi 7 including samples from slower bands of 2.4 GHz and 5 GHz, is still faster by 51.64 Mbps than Wi-Fi 6E at 712.51 Mbps. However, among the individual ISPs, there are some ISPs where 6E is faster than Wi-Fi 7. Even with the newest capabilities of Wi-Fi 7, the physical characteristics of a house, for example, can mean that the better coverage propagation characteristics of 2.4 GHz gives a better connection than 6 GHz.

Wi-Fi 7 benefits from double the channel bandwidth and four-times the modulation, as well as a feature called Multi-Link Operation (MLO) which allows data to travel across all frequency bands rather than one. As this analysis is focused on results rather than technical specifications, for those interested in learning more about Wi-Fi 7 capabilities, see The Ultimate Wi-Fi 7 Upgrade Guide by Ekahau (a Ziff Davis company, as is Ookla).

Among the top 10 ISPs, older generation Wi-Fi 4 and Wi-Fi 5 median download speeds generally cluster in similar ranges, respectively, though CenturyLink (Lumen) is slower due to a large portion of its customer base being on slower, copper-based broadband service. In its Q1 2025 earnings report, Lumen reported 1.1 million subscribers on fiber and 1.4 million customers primarily on the slower service.

Verizon’s relatively slower median download speeds on the newer Wi-Fi generations (6, 6E, 7) are likely due to customer rate plan mix.

Frontier, Verizon’s acquisition target, is clearly the fastest on Wi-Fi 7 and records the only gigabit median download speed of 1.011 Gbps.

Median Upload Speeds (Mbps), All and Top 10 Fixed Providers
Speedtest Intelligence data, United States, Q1 2025

As with download speeds, the upload speeds for all providers follow the expected path of getting faster with each newer Wi-Fi generation. However, among the ISPs, there is greater variation in the upload than the download. In particular, the cable ISPs – Cox Communications, Spectrum (Charter Communications), Xfinity (Comcast Corporation) – lagging behind the symmetrical speed of fiber, are far below in the uplink speed. The Wi-Fi 7 average of the median upload speeds of the three cable companies is just 64.40 Mbps vs. 595.75 for the seven fiber companies.

On Wi-Fi 4 and 5, the three cable companies average 47.1% of samples (almost half) while the seven fiber companies average 36.3% of samples on these older generations. The Wi-Fi 5 average of the median upload speeds of the three cable companies is just 27.65 Mbps vs. 178.17 Mbps for the seven fiber companies.  

If older cable technology tracks with the Wi-Fi router generations, then the cable companies have a slow-to-change portion of their customer base who will need targeted incentives to upgrade. The cellular industry markets its generations and consumers know, for example, that they need a 5G phone to be on a 5G network. But Wi-Fi, as a category, has not educated consumers to the same extent such that consumers could experience better connectivity with, for example, the latest router (assuming they even know the technology generation of their current router). And, given that the vast majority of a consumers’ mobile traffic is via Wi-Fi – and basically all of the home internet – this is an opportunity for the industry to align the network capability with the service plan with the router with the end device.

As with download speed, again Frontier clocks a blazing median upload speed of 0.9 Gbps (866.85 Mbps).

Median Multi-Server Latency (ms), All and Top 10 Fixed Providers
Speedtest Intelligence data, United States, Q1 2025

Just as with speeds, latency tracks its improvements by Wi-Fi generation for all providers. However, it is arguable from a consumer relevance perspective that Wi-Fi 5, 6, and 6E provide essentially the same latency experience across all providers. 

Also as with speed, the fiber companies (apart from MetroNet) have better performance on latencies than the cable companies. On average for Wi-Fi 7, the cable companies latency is 25 milliseconds (ms) vs. 15 ms for the fiber companies (including MetroNet, and including copper customers mentioned above).

The best performer on latency is the aptly named Ziply Fiber, with as-low-as or lower Wi-Fi 4 latency than other ISPs have on Wi-Fi 7 (12 ms), and Ziply is the only provider in single-digit Wi-Fi 7 latency (8 ms).

Wi-Fi 4 Nostalgia? Sentimental is bad for Sentiment

Speed and lag are critical in determining the customer experience. Customer experience relative to one’s expectations determines customer perception. The customer perception is captured by “sentiment” metrics like ratings or stars, satisfaction percentages, or loyalty and recommendation metrics like Net Promoter Score (NPS).

Taking a look at NPS by Wi-Fi generation, just as seen with download speed, upload speed and latency, each newer generation of Wi-Fi is attended by better consumer sentiment. To be clear, these are Speedtest users’ scores for their ISP by Wi-Fi generation, not a score for the routers themselves.

NPS by Wi-Fi Generation, Speedtest Intelligence data, Q1 2025:

Wi-FI 4Wi-Fi 5Wi-Fi 6Wi-Fi 6EWi-Fi 7
-383113045

As noted, a legacy of older Wi-Fi router generations in an ISP’s customer base, cable companies having more than fiber providers, limits the customer experience. So too with the transport technology (eg, DOCSIS 3.0). Furthermore, Wi-Fi 7 may need new consumer-premise cabling; some Wi-Fi 7 capable devices may not support the full channel width; and so on. This is to say that technology bottlenecks are possible at each node in the ecosystem. Getting this all lined up to match the service capabilities to the right-fit rate plan that meets the customer needs is Rubik’s Cube. More awareness, better education, and technology transparency will help realize the potential of Wi-Fi 7.

Ookla can assist ISPs, venue owners, and companies in designing Wi-Fi networks, monitoring their performance, and optimizing them. Please contact us to learn more about Speedtest Intelligence and Ekahau.


Other recent Wi-Fi 7 reporting: Wi-Fi 7 in Europe: France Leads in Differentiating Multi-Gigabit Fiber Experiences | Ookla®.


Sidebar

The significant merger and acquisition (M&A) activity among eight of our top ten Wi-Fi 7 providers is noteworthy: 

That leaves just Google Fiber and Xfinity on our top ten without recent, major M&A news. With so many providers (we count 59 ISPs in our data with Wi-Fi 7 samples, and there are more than a thousand fiber providers in the U.S.) in a capex-intensive industry, scale economics drives consolidation. Furthermore, there is a fiber-first imperative narrative that access technologies will converge over time, which also encourages industry consolidation.


Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| June 11, 2025

How Spain's Mobile Networks Performed During the Iberian Grid Collapse [Visualized] | Cómo Se Comportaron Las Redes Móviles Españolas Durante El Colapso De La Red Ibérica

Spanish/Español

Variation in outage scale and duration across mobile operators during the April 28th event reinforces the case that robust power resilience is now the single most decisive factor in preserving service continuity in mobile networks

The Iberian grid collapse stands as the starkest demonstration yet of the fragility of mobile network infrastructure precisely when it is needed most. Public scrutiny following the historic event has centred on understanding and ultimately mitigating the societal vulnerabilities stemming from mobile networks’ inherent reliance on a constant grid power supply, which is increasingly difficult to guarantee as severe events become more frequent.

For the first time, and with the goal of fostering deeper understanding of the interdependence between mobile and power infrastructure in Europe, Ookla is publishing detailed data exposing the scale and geographic distribution of mobile network disruptions caused by the April 28th event. Building on our earlier analysis, this research reveals that the impact of the power outage on mobile network infrastructure varied significantly across operators, with differing levels of power backup penetration likely a critical factor shaping the severity experienced by end users.

Key Takeaways:

  • At the peak of the April 28th blackout, more than half of all mobile network users across large parts of Spain were left completely without mobile signal. The proportion of mobile network users experiencing complete service loss (unable to call, text, or use data due to sites going dark) surged from a pre-blackout baseline of under 0.5% to more than 50% across extensive areas of Spain at the peak late on April 28th. This indicates a severe, widespread, and historic collapse of the mobile site grid that deepened throughout the afternoon and evening on the day of the blackout as available power backups were progressively depleted.
  • The timing and distribution of mobile network outages closely tracked the pattern of power grid events, underlining the telecom infrastructure’s vulnerability to even brief interruptions in power supply. Within 30 minutes of the grid failure (by 13:00 CET), the proportion of users with no service surged as small cells and sites with minimal power backup and battery autonomy went offline. After two hours, about 12% of users on the most affected operator had no service. Outage growth then slowed, suggesting that remaining macro sites, likely equipped with four-to-six hour battery banks, kept operating until their reserves ran out, leading to a final sharp wave of service loss in the late evening. The restoration of mobile services tracked the geographically-phased re-energisation of the power grid, with network disruptions persisted longer into the night in parts of Andalusia and Galicia.
  • While severe network outages were observed across all Spanish operators during the blackout, mobile users on the Vodafone network were less likely to experience a complete service loss. Four-to-eight hours after the grid collapse, the interval in which every operator hit its worst point in terms of service loss, Vodafone’s subscribers were, on average, less than half as likely to be left without service as subscribers on Orange’s network and notably less likely than subscribers on Movistar or Yoigo as well.
  • Morocco’s mobile site footprint remained operational throughout April 28th since domestic grid supply was unaffected. However, the country’s reliance on Spain for international connectivity in deeper network layers resulted in cascading failures and severe service degradation. The proportion of mobile users experiencing no service on the Orange Maroc and Maroc Telecom networks remained consistent with the pre-blackout baseline on April 28th, confirming there were no sustained network disruptions at the mobile site level due to grid failure, unlike in Spain and Portugal. However, analysis of Speedtest Intelligence data reveals significant performance degradation still occurred in Morocco, with the median load time for popular websites increasing by more than 20% compared to the same day in the previous week. The quality of experience (QoE) for Orange Maroc subscribers was particularly impacted during the blackout, reportedly due to disruptions in upstream subsea connectivity between Morocco and mainland Spain.

Power Resilience and Energy Management Strategies Shape the Anatomy of Network Outages

The Iberian grid collapse exemplifies a type of stress test becoming increasingly common in Europe—the ability of mobile network infrastructure to withstand prolonged, severe external shocks beyond direct operator, ensuring continuity of service precisely when it is most critical for public safety and societal functioning.

Beyond the April 28th blackout, recent events in the UK and Ireland, where winter storms (especially Storm Éowyn) caused extensive localized damage to electricity distribution networks, and in France, where substation vandalism resulted in brief but severe blackouts in Cannes and Nice, highlight electricity supply disruptions as a principal vulnerability for mobile networks reliant entirely on grid power. These disruptions add to other external vulnerabilities faced by operators, such as terrestrial or subsea fiber connectivity, upstream cloud links, and third-party peering connections.

Power resilience, particularly through battery and generator backup systems at mobile sites, has emerged as a key proactive measure to mitigate network outages resulting from electricity grid disruptions. Simply put, backup power serves a role analogous to public health measures in a pandemic: it strategically delays the onset of outages (extending the operational hours before sites lose power) and reduces the peak severity (limiting the total number of sites simultaneously affected).

Capital investments in network hardening tools like power redundancy can therefore “flatten” the service-impact curve during an outage event in the same way public health measures flattened the infection curve during the coronavirus pandemic. Prolonged and wide-area grid disruptions like the one on April 28th, however, demonstrate that no single measure is a silver bullet and long-term power autonomy is often not economically viable across a large proportion of the site footprint. 

Recognizing this, mobile operators typically implement aggressive energy management measures during power disruptions to maximize site uptime and strategically allocate network resources based on user priority. These measures may include throttling site transmit power to reduce coverage footprints, limiting spectrum diversity to limit carrier aggregation and overall capacity, and temporarily disabling newer technologies such as 5G and Massive MIMO to extend battery and generator runtime.

Differences in the extent of power backup deployment and the strategic use of energy conservation and load-shedding measures shape the anatomy of network outages. Such variations among operators may arise from a diversity of fuel choices for backup power (e.g., batteries might offer long-term monetization potential, including opportunities for resale to the grid, but typically have shorter runtimes), network configurations (such as RAN sharing arrangements and site types, with dense urban small cells facing greater physical constraints for power backup deployments), and subscriber base characteristics (e.g., operators serving a larger rural subscriber base face more complex and costly challenges in enhancing network resilience).

Iberian Grid Collapse Cascaded through Mobile Networks in Spain, Moving in Lockstep with Power Disruptions

Analysis of Ookla® background signal scan data reveals that the April 28th event placed unprecedented stress on mobile networks in Spain, triggering a rapid collapse in site grid density. The historic scale of this collapse severely curtailed the coverage footprint of operator infrastructure, pushing a significant share of Spanish mobile subscribers into a ‘no service’ state, unable to connect to a nearby mobile site and thus temporarily unable to make calls, send texts, or use data.

Geospatial sequencing of the ‘no service’ data calculates the average probability that a mobile network user was left without signal during any given time window and serves as a proxy for the overall proportion of subscribers left with no network access. This methodology illustrates that the impact of the power blackout quickly cascaded through Spain’s mobile networks (closely mirroring the infection curve analogy described earlier):

  • Baseline (Pre-Blackout): Mobile sites were operating as normal. The average proportion of subscribers without service was less than 0.5%, reflecting the very high levels of network availability typical of Spain.
  • Initial Impact (Immediate Aftermath of Blackout): The grid collapsed at ~12:33 CET across the Iberian Peninsula, triggering rectifiers or uninterruptible power supply (UPS) devices at mobile sites to switch over to backup batteries or generators (where these were installed and adequately charged or fueled).

    Within 30 minutes of the voltage drop, the proportion of subscribers without service had climbed well above the pre-event baseline across Spain and the outage curve entered a phase of runaway growth. This limited initial outage impact likely reflected the immediate loss of a small portion of the overall site footprint in areas where power backup was either absent or severely limited in capacity—most commonly at small cell sites in dense urban environments, where physical space restricts battery or generator installations, or at remote rural sites lacking redundancy (or featuring generators that took longer to switch over and come online).

    Notably, the balanced geographical spread of subscribers beginning to experience no service on their devices (i.e. losing network access) at the start of the network outages suggests that the timing of impacts was broadly consistent across Spain, affecting both rural and urban regions. However, the initial severity was more pronounced in areas along the east and south coasts, as well as in the interior of the country, potentially indicating a lower level of power autonomy at sites in these areas.
  • Ramp-Up (2-8 Hours After Blackout): Within two hours of the blackout, the most affected operator had already seen ~12% of users left with no service. After this point, the rate of outage growth slowed temporarily for several hours. This pattern suggests that the power backup profile of Spanish mobile sites was bi- or tri-modal, with a tiered approach to backup capacity employed by operators (i.e., site autonomy was clustered into configurations like two, four or six-hour power resilience, with battery discharge rates determined by amp-hour capacity and site load at each location).

    As a result of this tiered approach to power autonomy and site load variability, a portion of sites continued operating, likely in a reduced state with aggressive energy conservation measures in place (reflected in marked performance degradation observed in Speedtest Intelligence® data), throughout the afternoon and evening of April 28th.

    The eventual depletion of larger power reserves, typically found at major macro sites on lattice or monopole towers, triggered a final sharp wave of network outages four to eight hours after the blackout began. The loss of these wide-area ‘umbrella’ sites in the evening resulted in a substantial share of Spanish mobile subscribers experiencing no service by 21:00 CET, with severe network outages geographically distributed across all of Spain.
  • Peak (8-10 Hours After Blackout): The impact of the blackout on mobile network infrastructure in Spain peaked between 21:00 and 22:00 CET, with more than half of all mobile subscribers left without service across many regions by late evening, just before power began to return. By this stage (about ten hours after the initial power loss), even the most capable battery backups were likely exhausted, leaving only those sites powered by mobile or stationary generators still operational (especially where strategic fuel deliveries could extend uptime). 
  • Recovery (Remainder of April 28th and 29th): Cross-analysis of geospatial sequencing of the no service data with nighttime light emissions detailed in NASA satellite imagery reveals that the recovery of mobile services and the site grid footprint in Spain closely tracked the pattern of grid re-energization. The proportion of users without service began to decline in the mid-afternoon and early evening in the areas where power was first restored, as the grid operator carried out a phased nationwide black-start. This early network recovery was most evident in regions such as the Basque Country, Catalonia, and Castile and León.

    Significant network outages continued into the night in parts of Andalusia and Galicia, meanwhile, mirroring the slower pace of power restoration in these regions. In some parts of Andalusia, for example, more than half of subscribers remained without service by 6:00 a.m. the following morning, only regaining connectivity once power was restored shortly afterwards. The direct relationship between the timing of power restoration and mobile network recovery highlights that operators are wholly dependent on the grid for service continuity once backup systems are inevitably depleted.

Breadth and Depth of Power Autonomy Drives Differences in Network Resilience Outcomes 

The infection curve analogy provides a potent mechanism to visualize and compare network outage profiles and site resilience among Spain’s mobile operators during the blackout. The shape of these outage curves transforms the ‘no service’ data into a story about both network topology and the breadth and depth of power backup deployed across different operators.

In the context of the outage curves, the point where each curve rises from the baseline reflects the level of power autonomy or battery/generator depth. The height of the peak shows how evenly that autonomy is distributed across the site footprint, while the length of the tail can reveal the geographical skew of subscribers within each operator’s network.

On April 28th, Vodafone exhibited the earliest and lowest outage peak in Spain. The probability that a subscriber on its network was left without service peaked at about half that of Orange and notably below other operators. This early yet suppressed peak indicates a thin but widely deployed power autonomy layer in its network, with small cells (featuring short UPS reserves) dropping out quickly, while most large macro sites carrying modest batteries or generators with different configurations likely kept at least one carrier alive for several hours. This approach of spreading shallow reserves across most sites flattened Vodafone’s outage peak but also pulled it forward in time.

While Orange’s outage curve did not reach its peak until several hours after Vodafone, it is indicative of a strategy that concentrated on thick battery or generator backup at key sites but left a broad swath of sites vulnerable to synchronized collapse (as reflected in the sharp no service spikes), the higher peak suggests a larger share of its subscriber base was likely left with no service during the blackout.

Movistar’s outage profile fell between Vodafone and Orange in both the timing and height of its peak during the blackout, but the recovery of its site footprint was significantly more protracted—taking nearly twice as long (almost a day and a half) as the other operators for the proportion of subscribers with no service to drop below 2%. This is likely an artifact of the unique scale of its rural site and subscriber footprint in Spain, where power backup is often more reliant on generators that require manual intervention and are more limited in deployment due to the economic challenges posed by installation in remote areas. 

Network Resilience is about more than Power Redundancy

While the Iberian blackout may have been a black swan event, the wider global trend of escalating climate, energy, and security-driven shocks impacting multiple layers of telecom infrastructure—often beyond the direct control of mobile operators—has elevated network resilience from a secondary consideration to a core design principle. This shift is reflected in more robust policy oversight (as exemplified in countries like Norway and Finland) and is likely to be underpinned by fiscal subsidies that seek to support the deployment of more power resilience solutions at mobile sites.

Network resilience is, however, more than keeping the lights on; it also depends on other important factors like having diverse, independent paths to the wider internet. On the day of the blackout, Moroccan operators that funnel most of their international traffic through Spanish landing stations lost those paths when the grid collapse knocked Spanish routers and data centers offline.

Since the subsea capacity and routing of some Moroccan operators was dependent on a highly concentrated upstream Spain-centered corridor, there was limited immediate fail-over and users experienced sharp service degradation, even though power and equipment inside Morocco never went down. By contrast, operators that had additional fibers to France or Italy suffered more minor disruptions, highlighting how geographic and upstream diversity are just as critical to mobile network resilience as local power autonomy.


Cómo Se Comportaron Las Redes Móviles Españolas Durante El Colapso De La Red Ibérica

La variación en la escala y duración de las interrupciones entre los operadores de telefonía móvil durante el evento del 28 de abril refuerza la idea de que una sólida capacidad de recuperación energética es ahora el factor más decisivo para garantizar la continuidad del servicio en las redes móviles.

El colapso de la red ibérica es la demostración más clara de la fragilidad de la infraestructura de las redes móviles precisamente cuando más se necesita. El debate público tras el histórico suceso se ha centrado en comprender y, en última instancia, mitigar las vulnerabilidades sociales derivadas de la dependencia inherente de las redes móviles de un suministro constante de energía de la red, que es cada vez más difícil de garantizar a medida que los incidentes graves se hacen más frecuentes.

Por primera vez, y con el objetivo de fomentar una comprensión más profunda de la interdependencia entre la infraestructura móvil y la eléctrica en Europa, Ookla publica datos detallados que muestran la escala y la distribución geográfica de las interrupciones de la red móvil causadas por el apagón del 28 de abril. Sobre la base de nuestro análisis anterior, esta investigación revela que el impacto del corte de energía en la infraestructura de red móvil varió significativamente entre los operadores, y que los diferentes niveles de penetración de la energía de respaldo son probablemente un factor crítico que determina la gravedad que experimentan los usuarios finales.

Principales Conclusiones:

  • En el punto álgido del apagón del 28 de abril, más de la mitad de los usuarios de redes móviles de amplias zonas de España se quedaron completamente sin señal móvil. La proporción de usuarios de redes móviles que experimentaron una pérdida completa del servicio (sin poder llamar, enviar mensajes de texto o utilizar datos debido a que los sitios se habían quedado sin señal) pasó de un valor de referencia previo al apagón inferior al 0,5% a más del 50% en amplias zonas de España en el punto álgido del 28 de abril. Esto indica un colapso grave, generalizado e histórico de la red de telefonía móvil que se agravó durante la tarde y la noche del día del apagón a medida que se agotaban progresivamente las reservas de energía disponibles.
  • El momento y la distribución de los cortes de la red móvil siguieron el patrón de los incidentes de la red eléctrica, lo que evidencia la vulnerabilidad de la infraestructura de telecomunicaciones a las interrupciones, incluso breves, del suministro eléctrico. En los 30 minutos siguientes al fallo de la red (a las 13:00 CET), la proporción de usuarios sin servicio aumentó a medida que se desconectaban las células pequeñas y los emplazamientos con un mínimo de reserva de energía y autonomía de batería. Al cabo de dos horas, alrededor del 12% de los usuarios del operador más afectado carecían de servicio. El aumento de los cortes se ralentizó a continuación, lo que sugiere que los macroemplazamientos restantes, probablemente equipados con bancos de baterías de cuatro a seis horas de autonomía, siguieron funcionando hasta que se agotaron sus reservas, lo que provocó una última y brusca oleada de pérdidas de servicio a última hora de la tarde. El restablecimiento de los servicios móviles siguió el ritmo de la reenergización geográficamente escalonada de la red eléctrica, con interrupciones de la red que se prolongaron hasta bien entrada la noche en partes de Andalucía y Galicia. 
  • Aunque durante el apagón se observaron graves cortes de red en todos los operadores españoles, los usuarios de telefonía móvil de la red de Vodafone tuvieron menos probabilidades de sufrir una pérdida completa del servicio. Entre cuatro y ocho horas después del colapso de la red, el intervalo en el que cada operador alcanzó su peor punto en términos de pérdida de servicio, los abonados de Vodafone tuvieron, de media, menos de la mitad de probabilidades de quedarse sin servicio que los abonados de la red de Orange y notablemente menos probabilidades también que los abonados de Movistar o Yoigo.
  • La red de telefonía móvil de Marruecos permaneció operativa durante todo el 28 de abril, ya que el suministro de la red nacional no se vio afectado. Sin embargo, la dependencia del país de España para la conectividad internacional en capas más profundas de la red provocó fallos en cascada y una grave degradación del servicio. La proporción de usuarios de telefonía móvil sin servicio en las redes de Orange Maroc y Maroc Telecom se mantuvo el 28 de abril en el mismo nivel que antes del apagón, lo que confirma que no se produjeron interrupciones sostenidas de la red en los emplazamientos de telefonía móvil debido a fallos de la red, a diferencia de lo ocurrido en España y Portugal. Sin embargo, el análisis de los datos de Speedtest Intelligence revela que en Marruecos se siguió produciendo una degradación significativa del rendimiento, con un aumento de más del 20% en el tiempo medio de carga de los sitios web más populares en comparación con el mismo día de la semana anterior. La calidad de la experiencia (QoE) de los abonados de Orange Maroc se vio especialmente afectada durante el apagón, al parecer debido a interrupciones en la conectividad submarina ascendente entre Marruecos y España continental.

La resiliencia eléctrica y las estrategias de gestión de la energía determinan la anatomía de los cortes de red

El colapso de la red ibérica ejemplifica un tipo de prueba de resistencia cada vez más habitual en Europa: la capacidad de la infraestructura de redes móviles para resistir perturbaciones externas graves y prolongadas más allá del operador directo, garantizando la continuidad del servicio, precisamente cuando es más crítico para la seguridad pública y el funcionamiento de la sociedad.

Más allá del apagón del 28 de abril, los recientes sucesos en el Reino Unido e Irlanda, donde las tormentas invernales (especialmente la tormenta Éowyn) causaron grandes daños localizados en las redes de distribución eléctrica, y en Francia, donde el vandalismo en subestaciones provocó breves pero graves apagones en Cannes y Niza, ponen de manifiesto que las interrupciones del suministro eléctrico son una de las principales vulnerabilidades de las redes móviles que dependen totalmente de la red eléctrica. Estas interrupciones se suman a otras vulnerabilidades externas a las que se enfrentan los operadores, como la conectividad de fibra terrestre o submarina, los enlaces ascendentes en la nube y las conexiones igualitarias de terceros.

La resiliencia energética, en particular mediante sistemas de baterías y generadores de reserva en los emplazamientos móviles, ha surgido como una medida proactiva clave para mitigar los cortes de red derivados de las interrupciones de la red eléctrica. En pocas palabras, la energía de reserva desempeña un papel análogo al de las medidas de salud pública en una pandemia: retrasa estratégicamente el inicio de los cortes (ampliando las horas operativas antes de que los sites se queden sin energía) y reduce la gravedad máxima (limitando el número total de sitios afectados simultáneamente).

Por tanto, las inversiones de capital en herramientas de refuerzo de la red, como la redundancia de energía, pueden “aplanar” la curva de impacto del servicio durante un apagón, del mismo modo que las medidas de salud pública aplanaron la curva de infección durante la pandemia de coronavirus. Sin embargo, las interrupciones prolongadas y generalizadas de la red, como la del 28 de abril, demuestran que ninguna medida por sí sola es la panacea y que la autonomía energética a largo plazo no suele ser económicamente viable en una gran proporción de la huella del emplazamiento. 

Conscientes de ello, los operadores de telefonía móvil suelen aplicar medidas agresivas de gestión de la energía durante las interrupciones del suministro para maximizar el tiempo de actividad de los emplazamientos y asignar estratégicamente los recursos de red en función de la prioridad de los usuarios. Estas medidas pueden incluir el estrangulamiento de la potencia de transmisión del emplazamiento para reducir las huellas de cobertura, la limitación de la diversidad del espectro para limitar la agregación de portadoras y la capacidad global, y la desactivación temporal de tecnologías más nuevas como 5G y Massive MIMO para ampliar el tiempo de funcionamiento de la batería y el generador.

Las diferencias en el alcance del despliegue de respaldo de energía y el uso estratégico de medidas de conservación de la energía y reducción de la carga conforman la anatomía de los cortes de red. Estas variaciones entre operadores pueden deberse a la diversidad de combustibles elegidos para la energía de reserva (por ejemplo, las baterías pueden ofrecer un potencial de monetización a largo plazo, incluidas las oportunidades de reventa a la red, pero suelen tener tiempos de funcionamiento más cortos), configuraciones de red (como los acuerdos de compartición de RAN y los tipos de emplazamientos, con pequeñas células urbanas densas que se enfrentan a mayores limitaciones físicas para los despliegues de energía de reserva) y características de la base de abonados (por ejemplo, los operadores que atienden a una base de abonados rurales más grande se enfrentan a retos más complejos y costosos para mejorar la resiliencia de la red).

El colapso de la red ibérica se propagó en cascada a través de las redes móviles en España, moviéndose al unísono con las interrupciones del suministro eléctrico

El análisis de los datos de escaneo de señales de fondo de Ookla® revela que el incidente del 28 de abril provocó una tensión sin precedentes en las redes móviles de España, desencadenando un rápido colapso en la densidad de la red. La escala histórica de este colapso redujo gravemente la huella de cobertura de la infraestructura del operador, empujando a una parte significativa de los abonados móviles españoles a un estado de “sin servicio”, incapaces de conectarse a un sitio móvil cercano y, por tanto, temporalmente incapaces de hacer llamadas, enviar mensajes de texto o utilizar datos. 

La secuenciación geoespacial de los datos de “sin servicio” calcula la probabilidad media de que un usuario de red móvil se quedara sin señal durante una ventana temporal determinada y sirve como indicador de la proporción global de abonados que se quedan sin acceso a la red. Esta metodología ilustra que el impacto del apagón se propagó rápidamente en cascada por las redes móviles españolas (reflejando fielmente la analogía de la curva de infección descrita anteriormente):

  • Línea de base (antes del apagón). Los sitios móviles funcionaban con normalidad. La proporción media de abonados sin servicio era inferior al 0,5%, lo que refleja los altísimos niveles de disponibilidad de red típicos de España.
  • Impacto inicial (inmediatamente después del apagón). La red se colapsó en torno a las 12:33 CET en toda la Península Ibérica, lo que provocó que los rectificadores o los dispositivos de alimentación ininterrumpida (SAI) de las ubicaciones móviles pasaran a utilizar baterías o generadores de reserva (cuando éstos estaban instalados y adecuadamente cargados o alimentados). 

    A los 30 minutos de la caída de tensión, la proporción de abonados sin servicio había superado con creces la línea de base anterior al incidente en toda España y la curva de cortes entró en una fase de crecimiento descontrolado. Es probable que este impacto inicial limitado de los cortes reflejara la pérdida inmediata de una pequeña parte de la huella total del emplazamiento en zonas en las que no había suministro eléctrico de reserva o su capacidad era muy limitada, normalmente en emplazamientos de células pequeñas en entornos urbanos densos, donde el espacio físico restringe la instalación de baterías o generadores, o en emplazamientos rurales remotos sin redundancia (o con generadores que tardaron más en conectarse).

    Cabe destacar que la distribución geográfica equilibrada de los abonados que empezaron a quedarse sin servicio en sus dispositivos (es decir, a perder el acceso a la red) al inicio de los cortes de red sugiere que el momento de los impactos fue en general coherente en toda España, afectando tanto a regiones rurales como urbanas. Sin embargo, la gravedad inicial fue más pronunciada en las zonas situadas a lo largo de las costas este y sur, así como en el interior del país, lo que podría indicar un menor nivel de autonomía eléctrica en los emplazamientos de estas zonas. 
  • Recuperación (2-8 horas después del apagón). A las dos horas del apagón, el operador más afectado ya había visto cómo en torno al 12% de los usuarios se quedaban sin servicio. A partir de ese momento, el ritmo de crecimiento de los cortes disminuyó temporalmente durante varias horas. Este patrón sugiere que el perfil de reserva de energía de los sitios móviles españoles era bimodal o trimodal, con un enfoque escalonado de la capacidad de reserva empleada por los operadores (es decir, la autonomía de los sitios se agrupaba en configuraciones como resiliencia de energía de dos, cuatro o seis horas, con tasas de descarga de la batería determinadas por la capacidad de amperios-hora y la carga del sitio en cada ubicación).

    Como resultado de este enfoque escalonado de la autonomía energética y de la variabilidad de la carga del emplazamiento, una parte de los emplazamientos siguieron funcionando, probablemente en un estado reducido con medidas agresivas de conservación de la energía (reflejadas en la marcada degradación del rendimiento observada en los datos de Speedtest Intelligence®), durante toda la tarde y noche del 28 de abril. 

    El agotamiento final de las grandes reservas de energía, que suelen encontrarse en los principales macro-emplazamientos situados en torres de celosía o monoposte, desencadenó una última oleada de cortes de red entre cuatro y ocho horas después del inicio del apagón. La pérdida de estos emplazamientos “paraguas” de área amplia por la noche provocó que una parte sustancial de los abonados móviles españoles se quedaran sin servicio a las 21:00 CET, con graves cortes de red distribuidos geográficamente por toda España.
  • Pico (8-10 horas después del apagón). El impacto del apagón en la infraestructura de la red móvil en España alcanzó su punto álgido entre las 21:00 y las 22:00 CET, con más de la mitad de todos los abonados móviles sin servicio en muchas regiones a última hora de la tarde, justo antes de que empezara a volver la electricidad. Para entonces (unas diez horas después de la pérdida inicial de energía), incluso las baterías de reserva más potentes estaban probablemente agotadas, por lo que sólo quedaban operativas las instalaciones alimentadas por generadores móviles o fijos (especialmente en los casos en que el suministro estratégico de combustible podía prolongar el tiempo de actividad).

  • Recuperación (resto de los días 28 y 29 de abril). El análisis cruzado de la secuencia geoespacial de los datos de ausencia de servicio con las emisiones de luz nocturnas detalladas en las imágenes de satélite de la NASA revela que la recuperación de los servicios móviles y la huella de la red de los emplazamientos en España siguieron de cerca el patrón de reenergización de la red. La proporción de usuarios sin servicio empezó a disminuir a media tarde y a primera hora de la noche en las zonas donde primero se restableció el suministro eléctrico, a medida que el operador de la red realizaba un arranque en negro por fases en todo el país. Esta recuperación temprana de la red fue más evidente en regiones como el País Vasco, Cataluña y Castilla y León.

    Mientras tanto, en algunas zonas de Andalucía y Galicia los cortes de red continuaron durante la noche, reflejando el ritmo más lento del restablecimiento del suministro eléctrico en estas regiones. En algunas zonas de Andalucía, por ejemplo, más de la mitad de los abonados seguían sin servicio a las 6 de la mañana del día siguiente, y sólo recuperaron la conectividad cuando se restableció el suministro poco después. La relación directa entre el momento del restablecimiento del suministro eléctrico y la recuperación de la red móvil pone de manifiesto que los operadores dependen totalmente de la red para la continuidad del servicio una vez que los sistemas de reserva se agotan inevitablemente.

La amplitud y la profundidad de la autonomía eléctrica determinan las diferencias en los resultados de la recuperación de la red 

La analogía de la curva de infección proporciona un potente mecanismo para visualizar y comparar los perfiles de interrupción de la red y la capacidad de recuperación de los emplazamientos entre los operadores móviles españoles durante el apagón. La forma de estas curvas de cortes transforma los datos de “ausencia de servicio” en una historia sobre la topología de la red y la amplitud y profundidad de la reserva de energía desplegada por los distintos operadores.

En el contexto de las curvas de interrupciones, el punto en el que cada curva se eleva desde la línea de base refleja el nivel de autonomía eléctrica o la profundidad de la batería/generador. La altura del pico muestra hasta qué punto la autonomía se distribuye uniformemente a través de la huella del sitio, mientras que la longitud de la cola puede revelar el sesgo geográfico de los abonados dentro de la red de cada operador.

El 28 de abril, Vodafone exhibió el pico de cortes más temprano y más bajo de España. La probabilidad de que un abonado de su red se quedara sin servicio alcanzó un máximo de aproximadamente la mitad que el de Orange y notablemente por debajo de otros operadores. Este pico, temprano pero suprimido, indica una capa de autonomía energética delgada pero ampliamente desplegada en su red, con células pequeñas (que cuentan con reservas cortas de SAI) que se quedan sin servicio rápidamente, mientras que la mayoría de los grandes macroemplazamientos que llevan baterías modestas o generadores con diferentes configuraciones probablemente mantuvieron vivo al menos a un operador durante varias horas. Este planteamiento de repartir reservas poco profundas entre la mayoría de los emplazamientos aplanó el pico de cortes de Vodafone, pero también lo adelantó en el tiempo.

Aunque la curva de cortes de Orange no alcanzó su pico hasta varias horas después que la de Vodafone, es indicativa de una estrategia que se concentró en una reserva de baterías o generadores de gran capacidad en los emplazamientos clave, pero que dejó una amplia franja de emplazamientos vulnerables al colapso sincronizado (como reflejan los fuertes picos sin servicio), el pico más alto sugiere que una mayor parte de su base de abonados probablemente se quedó sin servicio durante el apagón.

El perfil de interrupción de Movistar se situó entre el de Vodafone y Orange tanto en el momento como en la altura de su pico durante el apagón, pero la recuperación de su huella de sitios fue significativamente más prolongada, tardando casi el doble de tiempo (casi un día y medio) que los otros operadores para que la proporción de abonados sin servicio cayera por debajo del 2%. Es probable que esto se deba a la escala única de su presencia rural y de abonados en España, donde la energía de reserva suele depender más de generadores que requieren intervención manual y cuyo despliegue es más limitado debido a las dificultades económicas que plantea la instalación en zonas remotas.

La resiliencia de la red va más allá de la redundancia energética

Si bien el apagón en la Península Ibérica pudo haber sido un evento inesperado, la creciente tendencia global de crisis climáticas, energéticas y de seguridad que impactan múltiples capas de la infraestructura de telecomunicaciones —a menudo fuera del control directo de los operadores móviles— ha elevado la resiliencia de la red de una consideración secundaria a un principio de diseño fundamental. Este cambio se refleja en una supervisión política más exhaustiva (como se ejemplifica en países como Noruega y Finlandia) y es probable que se sustente en subsidios fiscales que buscan apoyar el despliegue de más soluciones de resiliencia energética en las estaciones móviles.

La resiliencia de la red, sin embargo, va más allá de mantener las luces encendidas; también depende de otros factores importantes, como contar con rutas diversas e independientes hacia una internet más amplia. El día del apagón, los operadores marroquíes que canalizan la mayor parte de su tráfico internacional a través de estaciones de aterrizaje españolas perdieron esas rutas cuando el colapso de la red dejó fuera de servicio a los routers y centros de datos españoles.

Dado que la capacidad submarina y el enrutamiento de algunos operadores marroquíes dependían de un corredor de aguas arriba altamente concentrado y centrado en España, la conmutación por error inmediata fue limitada y los usuarios experimentaron una fuerte degradación del servicio, a pesar de que el suministro eléctrico y los equipos dentro de Marruecos nunca se interrumpieron. Por el contrario, los operadores que contaban con fibra adicional con Francia o Italia sufrieron interrupciones menores, lo que pone de manifiesto cómo la diversidad geográfica y de aguas arriba es tan crucial para la resiliencia de la red móvil como la disponibilidad de energía local.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| June 9, 2025

Rising Tide of Fiber Speeds in Mexico

Fiber Fuels Uplink Revolution and Intensifies ISP Competition

Spanish/Español

Significant improvements in internet services are being seen by customers in Mexico, notably enhanced speeds due to the strategic deployment of fiber infrastructure, offering superior symmetrical upload and download capabilities. It is essential for Mexican consumers to understand the technological advancements that are leading to these speed improvements to ensure they are subscribing to the optimal service as ISPs continue to develop their offerings.

A recent development includes Totalplay’s introduction of new plans with symmetrical speeds, a shift from their previous offerings that featured only asymmetrical speeds. Consequently, Totalplay’s uplink speeds are now receiving a substantial increase.

Fixed ISP Median Speeds, Mexico
Speedtest Intelligence data, monthly January 2021 – May 2025
Median download and upload speeds for Mexican ISPs over time

Ookla Speedtest Intelligence® data reveals that median fixed download speeds in Mexico have more than tripled over the past five years across all fixed ISPs. Totalplay, known for its emphasis on speed leadership, has a median download speed more than two-thirds faster than all providers combined in 2025, consistently setting itself apart from competitors.

The true differentiator, however, is increasingly found in upload speeds, where fiber optic technology (FTTH) shines.

  • Totalplay’s new plans introduced in April 2025 marked its entry into offering symmetrical speeds. Concurrent with this change, Speedtest data shows a dramatic leap in Totalplay’s median upload speeds, more than doubling from the weeks prior. While the observed median speeds may not yet be perfectly symmetrical—potentially due to factors like user equipment capabilities—this represents a significant enhancement to their service and reinforces their competitive speed position. The introduction of these faster plans prompted elevated testing by the Speedtest community, with speeds now settling at a new, higher watermark.
  • Telmex: Leveraging its substantial fiber footprint (while also upgrading a legacy DSL network), Telmex was the first major ISP in México to offer symmetrical speeds, beginning in January 2024. Telmex leads the number of broadband and voice subscribers in México, although it cannot offer pay TV services.
  • Megacable is executing on a multi-year plan to transition its HFC network to become a fully-fiber provider, a move evident in its steady gains in median upload speed. At the end of Q1 2025, 77% of subscribers were on fiber vs 67% in 1Q 2024, per Mega earnings report. 
  • izzi: Reliant primarily on cable (DOCSIS) technology, izzi faces inherent limitations in providing the same level of uplink speeds available with FTTH. Its network passes more than 19.9 million homes, but just 12.5 thousand of those are fiber, according to Grupo Televisa earnings report.

The strategic assets of each ISP clearly dictate their market positions and ability to compete on speed. Fiber providers like Totalplay and Telmex are less constrained by the asymmetrical nature of older technologies. Totalplay’s recent enhancement to its uplink capabilities is a clear strategic move, leveraging its FTTH infrastructure to further differentiate itself, particularly against the larger incumbent Telmex, and solidify its reputation as a speed leader in the dynamic Mexican broadband market. 

We’ll continue watching the Mexican telecommunications market to see what the next chapters bring.


Aumento de la velocidad de fibra en México

La fibra impulsa la revolución de la velocidad de subida e intensifica la competencia entre los ISP

Los clientes en México están experimentando mejoras significativas en los servicios de Internet, velocidades notablemente mejoradas debido al despliegue estratégico de infraestructura de fibra, que ofrece capacidades simétricas superiores de carga y descarga. Es esencial que los consumidores mexicanos comprendan los avances tecnológicos que están llevando a estas mejoras de velocidad para asegurarse de que se suscriben al servicio óptimo a medida que los ISP continúan desarrollando sus ofertas.

Entre los recientes desarrollos se incluye la introducción por parte de Totalplay de nuevos planes con velocidades simétricas, un cambio con respecto a sus ofertas anteriores que presentaban solo velocidades asimétricas. En consecuencia, las velocidades de subida de Totalplay están ahora registrando un aumento sustancial.

Velocidades medias de proveedores de servicios de Internet fijos en México
Datos de Speedtest Intelligence, mensuales de enero de 2021 a mayo de 2025
Median download and upload speeds for Mexican ISPs over time

Los datos de Speedtest Intelligence® de Ookla revelan que las velocidades medianas de descarga fijas en México se han más que triplicado en los últimos cinco años en todos los ISP fijos. Totalplay, conocido por su apuesta en el liderazgo en velocidad, registra una velocidad mediana de descarga más de dos tercios más rápida que la de todos los proveedores combinados en 2025, lo que hace que se diferencie de sus competidores de manera constante.

El verdadero diferenciador, sin embargo, se encuentra cada vez más en las velocidades de subida, donde la tecnología de fibra óptica (FTTH) brilla.

  • Los nuevos planes introducidos en abril de 2025 por Totalplay marcaron su entrada en la oferta de velocidades simétricas. Paralelamente a este cambio, los datos de Speedtest muestran un salto dramático en las velocidades medianas de subida de Totalplay, más del doble que en las semanas anteriores. Si bien las velocidades medianas observadas pueden no ser perfectamente simétricas, potencialmente debido a factores como las capacidades del equipo del usuario, esto representa una mejora significativa para su servicio y refuerza su posición competitiva en velocidad. La introducción de estos planes más rápidos provocó pruebas elevadas por parte de la comunidad Speedtest, con velocidades que ahora se establecen en un nuevo punto de referencia más alto.
  • Telmex. Aprovechando su considerable huella de fibra (mientras también actualiza una red DSL heredada), Telmex fue el primer ISP en México en ofrecer velocidades simétricas, comenzando en enero de 2024. Telmex lidera el número de suscriptores de banda ancha y voz en México, aunque no puede ofrecer servicios de televisión de pago.
  • Megacable está ejecutando un plan de varios años para transformar su red HFC en un proveedor totalmente de fibra, un movimiento evidente en sus ganancias constantes en la velocidad de subida media. Al final del primer trimestre de 2025, el 77% de los suscriptores estaban en fibra frente al 67% en el primer trimestre de 2024, según el informe de ganancias de Mega.
  • izzi. Dependiendo principalmente de la tecnología de cable (DOCSIS), izzi enfrenta limitaciones inherentes para ofrecer el mismo nivel de velocidades de subida disponibles con FTTH. Su red pasa por más de 19.9 millones de hogares, pero sólo 12.5 mil de ellos son de fibra, según el informe de resultados de Grupo Televisa.

Los activos estratégicos de cada ISP claramente dictan sus posiciones en el mercado y su capacidad para competir en velocidad. Los proveedores de fibra como Totalplay y Telmex están menos limitados por la naturaleza asimétrica de las tecnologías más antiguas. La reciente mejora de Totalplay en sus capacidades de subida es un movimiento estratégico claro, al aprovechar su infraestructura FTTH para diferenciarse aún más, particularmente contra el incumbente más grande, Telmex, y solidificar su reputación como líder en velocidad en el dinámico mercado de banda ancha mexicano.

Continuaremos observando el mercado de las telecomunicaciones mexicano para ver qué traen los próximos capítulos.


Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| June 10, 2025

Starlink’s U.S. Performance is on the Rise, Making it a Viable Broadband Option in Some States

The LEO satellite provider is giving free gear to new customers in areas where it has excess capacity. Will it be able to handle an influx of new customers and still maintain its broadband speeds? 

Key Takeaways

  • Users on Starlink’s network experienced median download speeds nearly double from 53.95 Mbps in Q3 2022 to 104.71 Mbps in Q1 2025. Median upload speeds also increased dramatically during the same period from 7.50 Mbps in Q3 2022 and to 14.84 Mbps in Q1 2025.
  • Only 17.4% of U.S. Starlink Speedtest users nationwide were able to get broadband speeds consistent with the FCC’s minimum requirement for broadband of 100 Mbps download speeds and 20 Mbps upload speeds. However, this small percentage of Starlink users is primarily due to its low upload speeds.
  • Speedtest® data for the states where Starlink is offering its free equipment to new users indicates that existing Starlink users are experiencing a range of median download speeds — from as high as 136.93 Mbps in Maine to as low as 72.65 Mbps in Alaska.
  • With Starlink’s substantial increase to its median upload and download speeds and ability to deliver broadband speeds of 100/20 Mbps to nearly 20% of Speedtest users across the country, the satellite provider is becoming an increasingly attractive broadband option for many.  

SpaceX’s low-Earth orbit (LEO) satellite provider Starlink is making inroads in the U.S. broadband market and trying to attract more subscribers by offering free equipment to new customers in states where it says it has excess capacity (more on this below).

Ookla® Speedtest data on Starlink indicates that the satellite company’s network performance has been on the uptick over the past couple of years and as of Q1 2025 17.42% of U.S. Starlink Speedtest users were able to get speeds consistent with the FCC’s minimum requirement for fixed broadband of 100 Mbps download speeds and 20 Mbps upload speeds. 

Starlink is positioned to benefit from recent changes to the Broadband Equity, Access and Deployment (BEAD) program. The National Telecommunications and Information Administration (NTIA) announced June 6 that it had reviewed the BEAD program and, as expected, it adopted a technology-neutral stance instead of prioritizing fiber deployments, making way for LEO satellite systems like Starlink to get BEAD funding. 

In addition, some states such as Maine have launched state-funded programs that subsidize Starlink for some rural addresses and more are likely to follow. The Texas Broadband Development Office, for example, announced in January 2025 that it is developing a grant program to support LEO satellite broadband service in rural areas. 

Starlink Upload, Download Speeds Are On the Rise

Starlink’s network performance over the past three years shows a dramatic increase in median download and upload speeds as well as a decline in latency. 

Starlink’s performance across the U.S. from Q1 2022 until Q1 2025 indicates that after experiencing a decline in download speeds between Q1 2022 and Q3 2022, U.S. Speedtest users on Starlink’s network saw a median download speeds nearly double from 53.95 Mbps in Q3 2022 to 104.71 Mbps in Q1 2025. 

The decline in median download speeds between Q1 2022 and Q3 2022 was likely due to growing pains as the satellite service added more subscribers and network usage increased. 

A similar trend was observed in median upload speeds as Speedtest users saw their median upload speeds decline between Q1 2022 from 9.81 Mbps to 7.50 Mbps in Q3 2022 and then tick upward to Q1 2025 when median upload speeds reached 14.84 Mbps.

Starlink's Median Upload, Download and Latency Speeds
Q1 2022 through Q1 2025
Starlink's Median Upload, Download and Latency Speeds Over Time

Starlink’s Latency Ticks Downward

Perhaps more importantly than download and upload speeds is latency, which is the time it takes to transmit data from one point in the network to another. Transmitting data between earth and space is particularly challenging because of the distance involved. However, because Starlink’s satellites orbit the planet in low-orbit (about 340 miles above the earth) its latency is much lower than geostationary satellite systems that orbit about 22,000 miles above the earth. For example, signals from satellite system such as HughesNet have a much greater distance to travel, which is why Speedtest users on HughesNet experience a much higher median latency than Starlink Speedtest users. 

A comparison of Starlink's Median Latency with HughesNet's Median Latency
Q1 2022 through Q1 2025
Starlink's low-Earth orbit median latency compared with geostationary satellite system's median latency

Starlink users in the U.S. experienced a median multi-server latency of 76 milliseconds (ms) in Q2 2022, but latency measurements ticked downward over time and in Q1 2025 Speedtest users clocked an average median latency of 45 ms.

Starlink said in March 2024 that it was improving its latency in the U.S. by adding six additional internet connection locations (also referred to as PoPs) and optimizing its gateway locations and its planning algorithms to ensure that traffic lands as close to its destination point as possible. 

In addition, the satellite company has also steadily added more satellites to its constellation. In February 2022 Starlink had 1,560 satellites in orbit and as of February 2025 it had 6,751 satellites in orbit. At publication of this report, Starlink had launched an additional 24 satellites into low Earth orbit. 


Starlink’s New Free Equipment Offer Targets Several States

Starlink recently announced plans to offer free equipment (valued at around $350) to new customers in areas where it has excess capacity. In the U.S., those areas are depicted on the map below and include all or portions of about 33 states. 

Map of Starlink's Free Equipment Offer Includes These States

Customers who receive the free gear must commit to a one-year plan, and they have a choice of one of two residential plans: An $80/mo plan that will give them speeds between 50-100 Mbps and a $120/mo plan that provides speeds of 250 Mbps. 

Ookla Speedtest data for the states where Starlink is offering the free equipment indicates that existing Starlink users are experiencing a range of median download speeds — from as high as 136.93 Mbps in Maine to as low as 72.65 Mbps in Alaska. Perhaps more telling is the download speeds for Speedtest users in the 25th percentile, which provides the download speed performance for the bottom quarter of Speedtest users in these states. 

With the exception of Alaska, the overall performance of the rest of the states, particularly the 25th percentile users in Nebraska, Colorado, Maine, Massachusetts, Nevada and Wyoming is probably a better indication of why Starlink is offering free gear to these states. With the 25th percentile of Starlink users in these states experiencing download speeds of more than 80 Mbps there is likely plenty of excess capacity. 

Although Starlink said its goal is to deliver service with just 20 milliseconds (ms) median latency, the lowest median latency rates recorded by Speedtest users in all or portions of the selected states was 38 ms in the District of Columbia and 39 ms in Arizona, Colorado and New Jersey. Alaska and Hawaii have the highest latency rates of 105 ms and 115 ms respectively. The higher latency rates in these two states is likely due to these two states being more geographically distant from Starlink’s constellation of satellites and not having the same density of satellites as the continental U.S.

Speedtest Performance for Starlink Users in States that Get Free Gear 


The portions or entirety of 33 states or territories where Starlink has decided to offer free gear to potential customers include both high density areas such as Washington D.C. and New Jersey as well as low density states like Alaska and Wyoming. With the exception of Alaska and West Texas, all of the states have a median download speed of more than 100 Mbps.

When looking at the 25th percentile of users (which are the bottom quarter of Starlink users in download speed performance) only one state – Alaska– has a download speed in the 30 Mbps range and three states have 25th percentile users getting in the 50 Mbps range for download speeds. 

In addition, when it comes to latency, 20 states have a median latency between 40-49 ms and two states on this list—Arizona and New Jersey— and Washington, D.C. —have median latency under 40 ms.

Starlink Speedtest Performance In the 50 U.S. States
How each state performs in latency, median download, and 25th percentile download
Starlink's performance in latency, median download, and 25th percentile download in all 50 states in the U.S.

Speedtest Performance in States Not Included in Starlink’s Free Equipment Offer

Many of the states where residents are not eligible to get Starlink’s free equipment offer are in the middle and southeastern areas of the U.S. and only eleven of those states have median download speeds over 100 Mbps compared to 28 states and Washington, D.C. that are in the eligible equipment list. 

Median latency rates in these ineligible states are very similar to the eligible states with 14 states having a median latency rate between 40- 49 ms. However, when examining the 25th percentile of users (which are the bottom quarter of Starlink users in download speed performance) one state — Florida — has 25th percentile download speeds of just 27.12 Mbps, Washington has 25th percentile download speeds of 46.92 Mbps and Louisiana has 25th percentile download speeds of just 48.25 Mbps. 

Northeast and Rural Mid-West States Win in Minimum Broadband Speeds 


Only 17.4% of Starlink Speedtest users are able to get broadband speeds consistent with the FCC’s minimum requirement for broadband of 100 Mbps download speeds and 20 Mbps upload speeds. Much of this is due to Starlink’s low upload speeds, which are on the uptick but with a combined overall median upload speed of 14.84 Mbps in Q1 2025 there is still room for improvement. 

However, when we look at all satellite providers that deliver service in the U.S., these providers combined are only able to provide 15.75% of Speedtest users with speeds that meet the FCC’s minimum requirement of 100/20 Mbps, which means Starlink outperforms the other providers in this category. 

On a state level analysis, when comparing the median download and upload speeds collected in Q1 2025 across all 50 states and Washington, D.C., South Dakota is the No. 1 state with 42.3% of Starlink users getting the FCC’s minimum standard for fixed broadband speeds (100 Mbps downstream/20 Mbps upstream). All of the top-performing Starlink states are in the Northeastern and Midwestern U.S. 

On the opposite end of the spectrum, the states with the lowest percentage of users receiving 100/20 Mbps broadband speeds are primarily in the Southeastern U.S. The only state outside of that area is Alaska with the smallest number of Speedtest users —just 5.3%—receiving 100/20 Mbps.

States With the Highest % of Starlink Users that Receive 100/20 Mbps Broadband Speeds 

State% of Starlink users that receive 100/20 Mbps
South Dakota42.3
Rhode Island 39.0
Wyoming38.5
Maine 36.5
Massachusetts 35.1
Data as of Q1 2025

States with the Lowest % of Starlink Users that Receive 100/20 Mbps Broadband Speeds

State % of Starlink users that receive 100/20 Mbps
Alaska5.3
Mississippi8.4
Louisiana9.0
Arkansas9.6
Florida9.8
Data as of Q1 2025

Starlink Delivers a Viable Broadband Option for Many

In our recent U.S. state broadband report which focused on Speedtest data from the 2H of 2024, we found that the number of states with 60% or more of Speedtest users getting speeds of 100/20 Mbps had increased substantially from the 1H of 2024. 

However, it was disheartening to discover that during that same time period the digital divide within many states had actually increased (some of this is attributed to the demise of the Affordable Connectivity Program) rather than decreased leading us to conclude that many of the recent broadband investments were resulting in better urban coverage rather than closing the gap in rural areas. 

With Starlink’s substantial increase to its median upload and download speeds and ability to deliver broadband speeds of 100/20 Mbps to nearly 20% of Speedtest users across the country, the satellite provider is becoming an increasingly attractive broadband option for many. 

With Starlink’s latest promotional offer of free equipment to consumers in areas where it has excess capacity, we expect to see the company’s subscriber count grow throughout 2025. It will be interesting to see how the LEO provider balances subscriber growth with capacity. 

We will continue to monitor Starlink’s speed performance in the U.S. throughout the year. For more information about Speedtest Intelligence® data and insights, please get in touch.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| February 20, 2025

What if Starlink Were Canceled in Ontario?

More than a million Canadians could be left out in the cold

In the head spinning geopolitical trade news, among many items was the canceling and uncanceling of Starlink in Ontario, Canada. In response to President Trump’s proposed tariffs on Canada, Ontario Premier Doug Ford stated on social media platform X that he planned to cancel the province’s contract with Starlink, which is owned by Elon Musk, who is working closely with Trump on a number of initiatives. However, within 24 hours of making that statement, Trump had delayed his planned tariffs and Ford said he would pause his retaliatory measures.

In Ontario and other provinces with relatively denser urbanization in their south, consumers have many options for broadband internet service. But in rural and remote areas of provinces and in much of The Territories, cancelling Starlink could result in the loss of internet connectivity entirely. Looking at Speedtest Intelligence data of Starlink users in Canada, we can estimate what might be at stake. We compared Starlink Speedtest user tests to the total number of fixed Speedtest user tests to estimate adoption trends among each Province and Territory from 2020 through 2024.

New Brunswick, Manitoba, Alberta and Ontario were the first to see traces of Starlink Speedtest users in 2020. Soon after in the first half of 2021, British Columbia, Nova Scotia, Quebec, and Saskatchewan appeared, with Prince Edward Island and Newfoundland and Labrador lighting up in the second half of 2021 as well.  Then the rest of Canada came in the back half of 2022 with the territories – Northwest Territories, Nunavut and Yukon – leaping into the picture.

Take off to the Great White North

A pattern emerges among the provinces and territories with the service launch of an adoption followed by a relative stabilization in the share of Starlink Speedtest user samples of the total fixed internet Speedtest samples.

Quite obviously the rates of adoption differ. As one would intuitively expect, the more-rural and less-population-dense areas see the steepest adoption curves. Nunavut in particular (population 37 thousand, whom all could fit inside the Rogers Center – home of the Toronto Blue Jays – yet similar in area to Mexico) rockets to the top of the chart and settles into the low-to-mid-40%s of Starlink Speedtest user sample share. Northwest Territories and Yukon, launching in the same time frame as Nunavut, also follow the more-rural-less-population-dense logic, reaching 27.8% and 20.9% share in 2H 2024. 

Vertical scale notwithstanding, the pattern is this:  a relatively quick market adoption with stabilization after a year roughly. Share stabilization could be due to the Starlink service fulfilling latent market demand or the satellite constellation’s capacity limits being reached (halting further sales of the service, like around Edmonton currently, for example, per starlink.com/map), or a combination of the two.

Ontario (the protagonist), British Columbia, and Quebec have the lowest percentage of rural populations in Canada, and that is reflected in their lower samples shares – 4.9%, 4.5% and 2.2%, respectively. 

Bringing it back together – what is at stake? Imagine that Starlink Speedtest user share is projectable to the population of Canada. That calculates to roughly 2 million Canadians who could feel the effects of such a cancellation. While many of those affected could switch to another internet service provider, for some in Canada – Nunavut especially – satellite connectivity is sometimes the only means of accessing the internet. Some portion of these people would be casualties in a trade war.

Learn more about the state of Canada’s internet connectivity at Canada’s Narrowing Broadband Divide and check out more Starlink analysis in Ookla’s recent article, Starlink Shines in Europe as Constellation Investments Boost Performance | Ookla®.


Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| March 19, 2025

A First Look at How Apple’s C1 Modem Performs With Early Adopters


The 16e is the first iPhone to feature the Apple-designed C1 modem.

Key Takeaways:

  • AT&T and Verizon Speedtest® users experienced better median download speeds on the iPhone 16e than iPhone 16. However, the opposite was true for T-Mobile users. 
  • Verizon Speedtest users with the iPhone 16e and the iPhone 16 experienced median download speeds that lagged behind that of both AT&T and T-Mobile. 
  • iPhone 16e Speedtest users on Verizon’s network and AT&T’s network saw higher upload speed performance than those using the iPhone 16. However, T-Mobile users experienced the opposite and had slightly higher upload speeds on the iPhone 16 compared to the iPhone 16e.

Apple’s new iPhone 16e made its commercial debut in late February with much fanfare because it’s the first device to include the Apple-designed C1 modem. Historically, Apple relied upon Qualcomm to provide most of its iPhone modems so its decision to use the C1 modem in the iPhone 16e is considered a significant move.  

Although it’s early in the adoption curve for the iPhone 16e, we analyzed the performance of the new device from March 1st through March 12th, and compared it to the performance of iPhone 16, which has a similar design and the same 6.1” screen. Both devices run on the same Apple-designed A18 SoC. However, it’s important to note that unlike the iPhone 16, the iPhone 16e does not support mmWave spectrum. This is the first iPhone available in the U.S. without mmWave support but we expect future iterations of the C1 modem will include it. 

iPhone 16 offers higher top-end performance than the iPhone 16e 

iPhone 16e Offers Better Worst-Case Speeds, but iPhone 16 Has a Higher Top-End Performance
Speedtest Intelligence® | 1-12 March, 2025

When we compare Speedtest Intelligence® data from the top 90th percentile (those with the highest performance experience) of iPhone 16e and iPhone 16 users  from all three of the top U.S. operators, we see the iPhone 16 performing better in download speeds. However, at the opposite end, with the 10th percentile of users (those who experience the lowest performance) we see the iPhone 16e performing better than the iPhone 16. 

iPhone 16e outperforms on download speeds for AT&T and Verizon, but not T-Mobile

Speedtest data shows the iPhone16e recorded faster median download speeds than the iPhone 16 on both AT&T and Verizon’s networks, but was markedly slower on T-Mobile’s network. 

iPhone 16e users on T-Mobile’s network experienced median download speeds of 264.71 Mbps, which is at least 47% faster than iPhone 16e users on Verizon’s network that experienced median download speeds of 140.77 Mbps. The download speed performance for iPhone 16e users on AT&T’s network was 226.90 Mbps, closer to that of T-Mobile users. 

However, when comparing median download speeds for T-Mobile users with the iPhone 16e (264.71 Mbps) to T-Mobile users with the iPhone 16 device (357.47 Mbps), the iPhone 16 outperformed the iPhone 16e by at least 24%.

The iPhone 16e’s underperformance in median download speed compared to the iPhone 16 on T-Mobile’s network is most likely due to the fact that T-Mobile is the only US carrier to have a nationwide commercialized 5G standalone network (SA) and one of the few operators globally to deploy significant spectrum depth and advanced features like carrier aggregation (CA) on the new 5G architecture. 

The C1 modem’s more limited capabilities on 5G SA networks compared to the Qualcomm modem in the iPhone 16 may be a key factor contributing to the larger performance gap between device models observed on T-Mobile’s network in early testing.

Verizon’s download performance lags on both devices

While much has been made of the lack of mmWave support on the iPhone 16e, which will have some impact on performance, particularly for users that are in range of these higher bands, both Verizon Speedtest users with the iPhone 16e and the iPhone 16 experienced median download speeds that lagged behind that of both AT&T and T-Mobile.

iPhone 16e Outperforms iPhone 16 on AT&T & Verizon Despite Lacking mmWave, but Trails on T-Mobile's 5G SA
Speedtest Intelligence® | 1-12 March, 2025

iPhone 16e beats the 16 among those in the 10th percentile

When we examine Speedtest Intelligence® data for the bottom 10th percentile  (those with the lowest overall download speeds) of iPhone 16e vs. iPhone 16 users, we see that iPhone 16e users experienced better download speeds compared to iPhone 16 users across all three mobile providers.  

For example, T-Mobile iPhone 16e users in the bottom 10th percentile are experiencing speeds of 57.34 Mbps compared to T-Mobile iPhone 16 users that are experiencing speeds of just  27.27 Mbps.

The Worst Outcomes on iPhone 16e Are Significantly Better Than on iPhone 16
Speedtest Intelligence® | 1-12 March, 2025

At the other end of the scale at the 90th percentile (those with the fastest overall download speeds), we saw the reverse with the iPhone 16 outpacing the iPhone 16e for each mobile provider. For example, T-Mobile iPhone 16 users in the 90th percentile experienced blazing fast median download speeds of 889.83 Mbps compared to T-Mobile iPhone 16e users that are experiencing median download speeds of 627.01 Mbps.

iPhone 16 Outperforms iPhone 16e in Peak Performance Scenarios
Speedtest Intelligence® | 1-12 March, 2025

Performance at the lowest 10th percentile often provides a more accurate reflection of overall quality of experience (QoE) than the fastest 90th percentile, which can be skewed by deployments in mmWave-covered locations and is subject to declining marginal returns.

iPhone 16e is higher in upload speeds

Interestingly, in upload speeds, we saw iPhone 16e users on Verizon and AT&T experiencing higher upload speed performance than those using the iPhone 16. T-Mobile users, however, experienced just slightly higher upload speeds on the iPhone 16e compared to the iPhone 16. The gap was the biggest with AT&T iPhone 16e customers, who experienced median upload speeds of 14.63 Mbps, which is at least a 38% increase over AT&T iPhone 16 users who experienced median upload speeds of 8.60 Mbps. 

iPhone 16e Leads iPhone 16 on Upload Speed across AT&T, T-Mobile and Verizon
Speedtest Intelligence® | 1-12 March, 2025

Apple’s departure from Qualcomm

Apple has historically sourced its iPhone modems from Qualcomm but in 2019 the company purchased Intel’s modem business with the goal of designing its own in-house modems. 

Apple’s iPhone 16e with the C1 modem supports all the low and mid-band 5G spectrum but, as mentioned above, it doesn’t support mmWave spectrum. It also supports Wi-Fi 6 with 2×2 MIMO and Bluetooth 5.3, but lacks Wi-Fi 7 support unlike the rest of the iPhone 16 series of devices. 

Apple claims that the C1 is more power-efficient than any modem ever used in an iPhone and said that the 16e has a new internal design, which allows it to give the device a bigger battery.  In its 16e specifications Apple claims that the 16e has a battery life of up to 26 hours with video playback and up to 21 hours with streaming video playback. This compares to the Apple 16 which Apple claims has a battery life of up to 22 hours with video playback and up to 18 hours with streaming video playback. 

Some of the performance differences that Speedtest data picked up between the iPhone 16e and the iPhone 16 may also be attributed to the fact that the C1 modem doesn’t have all the same capabilities that are featured in Qualcomm’s modems. 

According to a Qualcomm comparison of the C1 and its mid-tier and premium modems, Qualcomm’s mid-tier modems support 4CA downlink carrier aggregation and its top of the line x80 and x85 modems support 6CA downlink carrier aggregation compared to the C1 which supports just 3x downlink carrier aggregation. Qualcomm’s mid-tier, x80 and x85 modems also support uplink carrier aggregation and uplink MIMO and the Apple C1 does not. 

We will continue to monitor the performance of the iPhone 16e as adoption of the device increases around the world and we plan to publish a more comprehensive comparison across the entire iPhone 16 portfolio of devices. While we have not analyzed the iPhone 16 Pro Max’s performance here because it is in the premium device category, we do see it leading over the iPhone 16e in most performance metrics. 

Ookla analysts Mark Giles, Luke Kehoe and Kerry Baker contributed to this piece. 

To find out more about Speedtest Intelligence® data and insights, please contact us here.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| January 16, 2025

How South Carolina Teamed with Ookla to Become a Rural Broadband Leader

South Carolina is the only state where rural residents’ access to broadband outperforms those of urban residents 

Millions of Americans still don’t have access to affordable broadband service and this divide is even greater for those who live in rural areas of the United States. However, South Carolina stands apart from the other 49 states for its strength in delivering broadband to its rural residents.

According to Ookla® Speedtest® data compiled in the first half of 2024, 56.4% of Speedtest users in rural areas of South Carolina experienced the FCC’s minimum standard for fixed broadband speeds of 100 Mbps downstream and 20 Mbps upstream compared to 55.1% of Speedtest users in urban areas of the state. Currently, South Carolina is the only U.S. state with a higher percentage of rural Speedtest users getting the minimum standard for broadband than Speedtest users in urban areas of the state.

In Ookla’s “How the 50 U.S. States Stack up in Broadband Speed Performance: 1 H 2024,” report, we calculated the percentage of Speedtest users in rural areas vs. urban areas within every state that are currently receiving the FCC’s minimum standard of broadband.

Although some states, such as Connecticut and North Dakota, out-performed South Carolina by having a higher percentage of total Speedtest users in their state experiencing the FCC’s minimum standard for fixed broadband speeds, South Carolina is the only state where rural residents’ access to broadband outperforms those of urban residents. 

In the above chart we compared South Carolina’s closing of the urban/rural broadband gap with that of West Virginia to better depict the results of South Carolina’s work.

South Carolina’s broadband advantage

South Carolina was early to recognize that the best way to get broadband to underserved communities in the state was to first create accurate, reliable maps of the state’s broadband network performance.

That vision was in large part due to the efforts of Congressman Jim Clyburn (D-South Carolina). In an interview with Ookla, Clyburn said that his commitment to keeping rural health care centers open and the realization that they needed broadband connectivity to interface with larger teaching hospitals was what laid the foundation for him to become a rural broadband champion.

“I am very committed to creating rural connected health centers,” Cyburn said. “For this to happen, we need broadband.”

To create more reliable broadband maps, Clyburn enlisted the help of entrepreneur Jim Stritzinger, the former founder and CEO of Revolution D, who today serves as South Carolina’s Broadband Director at the Office of Regulatory Staff.

Back in 2019, Stritzinger, an electrical engineer by training, had studied the FCC’s original broadband coverage maps and realized that much of the agency’s data was based upon assertions by broadband providers, some of which were claiming to deliver 100 Mbps download speeds over their copper-based DSL service.

Instead of relying upon self-reported, advertised network speeds by internet service providers (ISPs), Stritzinger decided to develop a new mapping methodology which focused on the best deployed technology (i.e., fiber, cable, DSL) in each census block. Once the best available technology was defined, he then utilized advanced analytics to calculate likely available download and upload speeds in the same areas.

Congressman Clyburn enlisted Ookla and its Ookla for Good™ program to help with the effort and it was decided that Stritzinger would use Ookla Speedtest Intelligence®data to ensure the integrity of the mapping methodology by comparing calculated values with actual consumers’ network performance results as seen in Ookla Speedtest Intelligence data. The project kicked off in the summer of 2019.

 “I built a brand-new set of South Carolina maps that ignored advertised speeds and instead used likely available speeds based upon the best deployed technology and available Ookla data,” Stritzinger said. “The results were game-changing.”

The Solution

Today, in his role as Director of the South Carolina Broadband Office (SCBBO) and with a full-time staff of six, Stritzinger’s team continues to innovate with Ookla. In early 2023, the SCBBO partnered with Ookla and IBM to develop a state-of-the-art Construction Dashboard.

“The SCBBO came to us with this idea — to take real-time Ookla Speedtest data — and to focus on the areas with state and federal investments. With this data, the hypothesis was that we could show the areas turn green on a map once construction completes and enough users were activated. Speedtests provide independent, third-party verification of consumer activity and they also provide engineering evidence that networks are meeting federal 100/20 standards,” said Lindsey Sample, IBM’s State of New York Technology Sales Leader. Sample worked closely with the SCBBO in her prior role as IBM’s South Carolina Data and AI Technical and Sales Specialist.

“Now that it is fully operational, the SCBBO’s Construction Dashboard is an amazing storytelling tool that brings to life, on a weekly basis and in a visual format, the impact of this government funding and the positive impact on real citizens that this work has in closing the digital divide,” Sample said.

By using the Construction Dashboard, the SCBBO can immediately determine if the state and federal broadband investments are meeting construction milestones.

“This allows us to check on the funding to make sure construction progress is occurring,” Stritzinger said, adding “the Construction Dashboard is critical for the SCBBO because we don’t release any broadband funds until projects are construction-complete and network performance is verified.”

Other states are following South Carolina’s lead and have started using Ookla’s Speedtest data to track network deployment progress and subscriber adoption. For example, Vermont is also working with Ookla and IBM to create a similar service.

Stritzinger and his team can also track the progress of federal broadband projects such as those funded by the U.S. Department of Agriculture (ReConnect) and the Federal Communication Commission’s Rural Digital Opportunity Fund (RDOF) as well as state-funded projects and even privately funded ventures.

One funding project that is garnering a lot of attention right now is the Broadband Equity Access and Deployment (BEAD) fund, which is being managed by the National Telecommunications and Information Administration (NTIA). BEAD made $42.5 billion in funding available for U.S. states and territories and the program requires states and territories to provide plans for connecting 100% of locations. The NTIA on Dec. 5, 2024, released its Draft Performance Measures for BEAD Last-Mile Networks outlining anticipated standards for speed, latency and reliability.

Ookla Speedtest results are already used by hundreds of internet service providers (ISPs) for reporting network performance for other federal broadband programs such as the Connect America Fund, RDOF and others.

The Outcome

South Carolina will receive more than $551 million in BEAD funding, but South Carolina’s broadband office estimates that the state only has about 32,000 remaining BEAD eligible locations to connect and has a goal to have BEAD Deployment investments in place to reach those remaining locations by no later than June 2026.

If the state does not need the full $551 million to connect all residents and businesses, it will work with state leadership to develop a plan for BEAD non-deployment funds. The SCBBO hopes to continue to build South Carolina’s broadband infrastructure and turn South Carolina into an “internet powerhouse” that will attract more industry.

For Congressman Clyburn, closing South Carolina’s digital divide is a big win. “I’m very proud of this accomplishment for South Carolina.”

Clyburn’s advice to other leaders that are trying to deliver broadband to rural areas of their state: “Innovate, innovate, innovate.”

To learn more about how South Carolina’s Broadband Office is using crowdsourced data to track its broadband deployments and solve its digital divide, check out this webinar.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.

| May 28, 2025

Benchmarking Mobile Performance Across Mexican Cities

This city-level mobile performance benchmark, comparing ten of the largest Mexican cities with a selection of other major cities across Latin America, highlights the challenges facing the Mexican mobile market, with city-level performance lagging, and at risk of falling further behind regional peers.

Key Takeaways

  • 5G continues to underwhelm within Mexican cities. A lack of 5G momentum and a concentrated mobile market structure have negatively weighed on the Mexican mobile user experience. Mexican cities lag their more advanced Latin American counterparts across key metrics like median download speed, with the fastest Mexican city, Monterrey, recording 55.17 Mbps in Q1 2025, a far cry from the 250.71 Mbps recorded in Rio de Janeiro.
  • Year-on-year data indicates the market’s digital competitiveness is eroding. The trajectory for most Mexican cities appears to be one of marginal performance gains, which indicates other regional peers are likely to continue to leapfrog Mexico as attractive inward investment destinations, particularly in cases where mobile digital infrastructure forms a key enterprise requirement.
  • Mexico City and its satellite cities underperform within Mexico. There is wide variation in mobile network performance outcomes between Mexican cities. Mexico City, and surrounding satellite cities including Ciudad Nezahualcóyotl, Ecatepec de Morelos, as well as Puebla, all perform relatively poorly compared to their peers, with median speeds of approximately 30 Mbps and lower. This is compounded for users experiencing the worst 10% of network performance, where recorded speeds were 3 Mbps and lower.
  • Poor performance drags down web load times. User experienced web page load times exceeded a median of 2.4 seconds in three of the ten Mexican cities included in this analysis, well behind regional leader Buenos Aires, which clocked just 1.44 seconds. The varied outcomes across web page and video streaming performance highlight the challenges operators in the market face in ensuring consistent performance.

Mexican cities lag behind leading Latin American counterparts

Ookla’s Speedtest data recently played a key role in a World Bank study that exposed significant disparities in internet access across Brazilian cities. The research found that wealthier neighborhoods consistently experienced superior internet speeds, particularly on fixed networks. While mobile users across Brazil’s cities have benefited from 5G rollout, with the market placing 6th globally in the Speedtest Global Index based on median download speeds as of April 2025, Mexico, the second largest market by population in Latin America, languishes in 78th place. In this article, we benchmark mobile network performance outcomes across the ten largest Mexican cities, comparing them to a selection of other Latin American cities.

A majority of the population across Latin America resides in urban locations, which comprise 81.8% of the total population across Latin America and the Caribbean, according to World Bank data for 2023. Mexico marginally lags this regional average, at 81.6%, ahead of the EU at 75.7%, but behind other key competitors such as Argentina, Brazil, Chile, Colombia, and Uruguay.

Mexican cities ranked in the middle of the pack compared to regional rivals on median download speed, lagging far behind leading cities in Brazil, Uruguay and Argentina. The leading Mexican city, Monterrey, recorded a median of 55.17 Mbps in Q1 2025, compared to 250.71 Mbps in Rio de Janeiro. There was a wide variety of outcomes across Mexican cities, ranging from Monterrey’s high, to a low of 26.11 Mbps in Ecatepec. This is reinforced by performance for those users experiencing the lowest 10% of samples (the 10th percentile), with Mexico City and its satellite cities – Ecatepec, Ciudad Nezahualcoyotl, as well as Puebla seeing outcomes for these users of 3 Mbps and lower, and with only users in Santa Cruz de la Sierra in Bolivia faring worse.

It’s clear that users across Latin American cities value mobile network performance, as evidenced by the clear relationship between Q1 2025 download speeds and Net Promoter Score (NPS) data for Q1 2025. Among Mexican cities, this placed Monterrey first, with an NPS of +19.5, followed by Tijuana and Zapopan, and Guadalajara.

Latin American City Benchmark – Mobile Performance
Speedtest Intelligence, Q1 2025

Maps are the best way to clearly illustrate performance differences within cities. Our recent study with Dublin City Council, which aimed to pinpoint areas of poor performance across that city, highlighted how crucial it is for urban leaders to understand the spread of mobile internet outcomes throughout their jurisdictions. This understanding allows them to combine this data with other information, such as the locations of city-owned infrastructure, as they seek to drive improvement.

Comparing Mexico City to São Paulo visually demonstrates these performance differences. In São Paulo, based on Speedtest data for Q4 2024 – Q1 2025, a majority of locations have median download speeds exceeding 50 Mbps (colored dark green). Conversely, a significant portion of locations within Mexico City display median download speeds of 25 Mbps or less, as evidenced by the prevalence of orange and red tiles, especially along its eastern border with the State of Mexico.

Variation in mobile user experience highlights the impact of performance disparities

Key quality of experience (QoE) metrics such as web page load time, video start time, and the share of full HD samples, again show mixed outcomes for Mexican users across the nation’s cities. 

The Mexican cities of Puebla, Zapopan, and Guadalajara had the worst web page load times, alongside Panama City, with median load times exceeding 2.4 seconds. In contrast, Mexico City and its satellite cities performed much better, recording median page load times of 1.75 seconds or less.

Regarding video streaming, only Guatemala City achieved a majority of users recording a fast video start time (where over 50% of samples played in under 2 seconds). Notably, five of the ten Mexican cities in this study recorded 40% or lower for this metric.

Latin American City Benchmark – QoE Performance
Speedtest Intelligence, Q1 2025

5G is yet to deliver on its potential for Mexican cities

Mexican cities underperform based on mobile network speeds compared to other major cities in Latin America, especially given their relatively high adoption of 5G. As of Q4 2024, Mexico ranks third in Latin America for the share of 5G connections per market (9.4%), according to GSMA Intelligence, trailing only Chile (18.6%) and Brazil (25.7%).

However, our data reveals significant disparities in 5G Service within Mexican cities. 5G Service refers to the percentage of locations where an operator provides service and 5G users can access the network. This variation suggests an uneven 5G rollout across the country. Specifically, Mexican cities with the lowest median download speeds consistently show lower 5G Service percentages. For example, Ecatepec recorded only 4.5% 5G Service, while Mexico City stood at 18.5%. In contrast, leading cities like Monterrey achieved nearly 40% 5G Service, highlighting the stark differences in network coverage across the market.

Latin American City Benchmark – 5G Service in Mexican Cities
Speedtest Intelligence, Q1 2025

Mexican cities are disproportionately represented within the benchmark group of cities, among those with the smallest year-on-year improvements in median download speeds, comparing Q1 2024 to Q1 2025. Out of 24 cities included in our study, only Monterrey and Tijuana ranked in the top ten for the largest improvements. In contrast, six Mexican cities appeared in the bottom ten for performance gains.

Latin American City Benchmark – Annual Improvement in Median Download Speed
Speedtest Intelligence, Q1 2024 vs Q1 2025

Mexican cities face significant challenges in driving improved mobile network outcomes, despite 5G launching in the market in early 2022. High spectrum licence fees, which have led to a lack of operator interest, and even the handing back of allocated spectrum, highlight one of the key issues facing the development of 5G in the market. This continues to manifest through strong regional disparities in mobile performance between Mexican cities, in 5G Service across the market, and in the fact that Telcel continues to maintain a market share in excess of 50%. Couple this with the disbanding of the independent telecoms regulator, the IFT, by the government late last year, and it’s clear Mexico faces significant challenges in fostering the development of its mobile networks.

Ookla is attending the GSMA’s M360 Latin America, in Mexico City from 28-29th May. If you’re attending and would like to connect, please reach out to us.

Ookla retains ownership of this article including all of the intellectual property rights, data, content graphs and analysis. This article may not be quoted, reproduced, distributed or published for any commercial purpose without prior consent. Members of the press and others using the findings in this article for non-commercial purposes are welcome to publicly share and link to report information with attribution to Ookla.